检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段敏霞 刘鑫[1] 董增寿[1] 庞俊 DUAN Min-xia;LIU Xin;DONG Zeng-shou;PANG Jun(School of Electronic Information Engineering, Taiyuan University of Science and Technology,Taiyuan 030024, China)
机构地区:[1]太原科技大学电子信息工程学院,太原030024
出 处:《组合机床与自动化加工技术》2021年第2期25-29,共5页Modular Machine Tool & Automatic Manufacturing Technique
基 金:国家留学基金资助;山西省留学归国人员择优资助项目(201802);山西省重点研发计划项目(201903D321012);山西省研究生教育创新项目(2019SY487);山西省回国留学人员科研资助项目(2020-127)。
摘 要:由于滚动轴承的工作环境复杂,所采集的信号中通常含有大量噪声,噪声的存在会影响故障诊断的结果。为了提高噪声数据的诊断精度,采用改进的小波阈值函数结合栈式自编码器(stacked auto-encoder,SAE)对强噪声环境下的轴承数据进行故障诊断。首先通过改进阈值函数对噪声数据进行去噪,其次用小波包变换提取去噪数据的小波包能量,最后通过SAE得到故障的分类结果。通过在凯斯西储大学的轴承数据集上的实验表明,该模型能够在强噪声背景下得到较为准确的分类结果。The collected vibration signals usually contain a lot of noise due to the complicated working environment of rolling bearings,and the existence of noise will affect the results of fault diagnosis.In order to improve the diagnostic accuracy of noise data,an improved wavelet threshold function combined with a stacked auto-encoder(SAE)is used to diagnose the bearing data in a strong noise environment.First,the noise data is denoised by improving the threshold function,then the wavelet packet energy of the denoised data is extracted by wavelet packet transformation,and finally the fault classification result is obtained by SAE.Experiments on the bearing dataset of Case Western Reserve University(CWRU)show that the model can get more accurate classification results under the background of strong noise.
分 类 号:TH133.33[机械工程—机械制造及自动化] TG65[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.241.210