检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:夏俊 贾民平[1] XIA Jun;JIA Minping(School of Mechanical Engineering,Southeast University,Nanjing 211189,China)
出 处:《振动与冲击》2021年第4期250-254,共5页Journal of Vibration and Shock
基 金:国家自然科学基金(51675098)。
摘 要:共振稀疏分解方法在滚动轴承故障诊断方面得到广泛应用,分解参数的选取对故障分离效果起决定性影响。为保证参数选择的准确性,提出基于松鼠算法的自适应共振稀疏分解多参数优化方法。以信号低共振分量峭度最大作为目标,使用松鼠算法同时优化共振稀疏分解的品质因子与权重系数;利用最优品质因子和权重系数对滚动轴承振动信号进行共振稀疏分解,得到高低共振分量;对低共振分量进行希尔伯特包络谱分析。通过仿真试验和应用实例证明,所提方法可以有效提取轴承的微弱故障信息,实现共振稀疏分解小波基函数库与耗散函数之间的最优匹配,具有较高的分离精度。The resonance-based sparse decomposition method has been widely used in fault diagnosis of rolling bearings.The selection of decomposition parameters has a decisive impact on the effect of fault separation.To ensure the accuracy of parameter selection,an adaptive resonance-based sparse decomposition method with multi-parameter optimization was proposed.Firstly,aiming at maximizing the kurtosis of low resonance component,the squirrel algorithm was used to optimize the quality factor and weight coefficient at the same time.Secondly,the vibration signal of a rolling bearing was decomposed by the optimal quality factor and weight coefficient to obtain the high resonance-based component and the low resonance component.Finally,the Hilbert envelope spectrum analysis was performed on the low resonance component.The simulation experiment and application examples show that the proposed method can effectively extract the weak fault information of the bearing,realize the optimal matching between the wavelet basis function library and the cost function,and has high separation accuracy.
关 键 词:共振稀疏分解 可调品质因子小波变换 松鼠算法 故障诊断
分 类 号:TH133.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.252.33