汽车前纵梁吸能盒结构耐撞性多目标优化  被引量:10

Multi-objective optimization of crashworthiness of energy-absorbing box for vehicle front longitudinal beam

在线阅读下载全文

作  者:徐中明[1] 王青青[1] 范维春 张志飞[1] XU Zhongming;WANG Qingqing;FAN Weichun;ZHANG Zhifei(School of Automotive Engineering,Chongqing University,Chongqing 400044,China)

机构地区:[1]重庆大学汽车工程学院,重庆400044

出  处:《振动与冲击》2021年第3期212-217,共6页Journal of Vibration and Shock

基  金:重庆市技术创新与应用发展专项重点项目(cstc2019jscx-fxydX0021)。

摘  要:吸能盒上诱导槽的分布形式对汽车碰撞性能有很大影响。以汽车前纵梁吸能盒结构为对象,建立整车正面碰撞仿真模型,对吸能盒结构的耐撞性进行了多目标优化设计。以吸能盒上诱导槽之间的间距为设计变量,使用Hammersley方法采集样本点后,以车辆吸能盒的最大吸能量E、最大刚性墙反力F以及车身最大加速度a为目标函数,通过kriging法以及径向基法构建各目标函数的近似代理模型,并检验了近似模型的精度。采用第二代非劣排序遗传算法(NSGA-Ⅱ)进行了多目标优化。结果表明,与原模型相比,优化后的非均匀分布形式的诱导槽结构耐撞性改善明显,变形压缩模式更充分、有序。The distribution form of inducing grooves on energy-absorbing box has a great influence on vehicle collision performance.Here,taking energy-absorbing box structure of vehicle front longitudinal beam as the study object,the simulation model of vehicle frontal collision was established,and the multi-objective optimization design was performed for the crashworthiness of the energy-absorbing box structure.Taking spacing between inducting grooves on the box as the design variable,after sample points were collected using Hammersley method,the maximum energy absorption E of the box,the maximum rigid wall reaction force F and the maximum car body acceleration a were taken as objective functions.Kriging method and the radial basis method were used to construct the approximate surrogate model for each objective function,and accuracies of these models were tested.The multi-objective optimization was performed for these models with the second-generation non-inferior sorting genetic algorithm-II(NSGA-II).The results showed that compared with the original model,the non-uniform distribution form of inducing grooves on the box after optimization obviously improves the box’s crashworthiness;the deformation compression mode is more sufficient and orderly.

关 键 词:汽车 抗撞性 吸能盒 诱导槽 多目标优化设计 

分 类 号:U463.83[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象