基于GALJP滤波器的迟滞特性建模与补偿控制  被引量:1

Hysteresis Modeling and Compensation Control Based on Gradient Adaptive Lattice Joint Processing Filter

在线阅读下载全文

作  者:孙思维 毛雪飞 黄梦琦 刘向东[1] 李震[1] SUN Siwei;MAO Xuefei;HUANG Mengqi;LIU Xiangdong;LI Zhen(School of Automation,Beijing Institute of Technology,Beijing 100081,China;Agricultural Bank of China,Beijing 100005,China)

机构地区:[1]北京理工大学自动化学院,北京100081 [2]中国农业银行,北京100005

出  处:《电气传动》2021年第5期52-57,共6页Electric Drive

基  金:国家自然科学基金(11572035,51707009);北京市自然科学基金(4122066)。

摘  要:提出一种采用正交结构并基于Backlash算子的梯度自适应格型联合处理(GALJP)滤波器用于压电陶瓷致动器迟滞特性建模与逆补偿控制。该滤波器综合了梯度格型滤波器与自适应横向滤波器的优点,可以在阶数较低时达到良好的控制效果。首先在衰减正弦波信号下建立基于GALJP的迟滞正模型,研究表明在阶数为2时,模型的均方根误差最小,仅为0.0104μm。然后在半实物仿真实验平台上使用2阶的GALJP滤波器进行压电陶瓷致动器的迟滞补偿控制实验。实验结果表明,利用这种控制方法在随机三角波和随机正弦波信号激励下均有很好的跟踪效果,均方根误差为总行程的0.0238%和0.0262%。A gradient adaptive lattice joint processing(GALJP)filter using orthogonal structure and Backlash operator was proposed for hysteresis modeling and inverse compensation control of piezoelectric ceramic actuators.This filter combines the advantages of the gradient lattice filter and the adaptive transversal filter,and a good control performance can be achieved when the order is low.A GALJP-based hysteresis model was first established under a decaying sine wave signal.It can be known that when the order is 2,the model has the smallest root mean square error,only 0.0104μm in the study.Then,the hysteresis compensation control experiment of the piezoelectric ceramic actuator was carried out on the semi-physical simulation experiment platform using the second-order GALJP filter.It can be found from the experimental results that the control method has a good tracking effect under the excitation of the random triangle wave and random sine wave signal.The root mean squared error is 0.0238%and 0.0262%of the total stroke.

关 键 词:梯度自适应格型联合处理滤波器 自适应控制 压电致动器 迟滞非线性 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象