基于AP聚类与随机森林的客户流失预测研究  被引量:7

Research on Prediction Model of Customer Churn Based on AP Clustering and Random Forest

在线阅读下载全文

作  者:胡永培 张琛 HU Yong-pei;ZHANG Chen(Department of Big Data,Huishang Bank,Hefei 230601,China;School of Artificial Intelligence and Big Data,Hefei University,Hefei 230601,China)

机构地区:[1]徽商银行大数据部,安徽合肥230601 [2]合肥学院人工智能与大数据学院,安徽合肥230601

出  处:《计算机技术与发展》2021年第2期49-53,共5页Computer Technology and Development

基  金:国家自然科学基金青年项目(61806068)。

摘  要:利率市场化、大数据迅速发展,银行业均表现出明显的“二八定律”现象,20%的优质客户占据了银行的大部分资产。那么,如何防止银行客户流失,尤其是优质客户的流失,已经成为银行越来越关注的问题。因此,建立优质客户流失预警模型就显得尤为重要。以某商业银行为例,重新对客户流失进行定义,重点关注银行优质客户的流失预警,首先使用AP聚类算法进行属性选择,然后使用随机森林方法建立客户流失预警模型,预测零售优质客户未来3个月流失的可能性。为了验证该方法的有效性,首先在UCI数据集上进行验证,得到了较好的效果,然后使用该方法构建银行业优质客户流失预测模型,实验结果表明该模型的实际预测效果相较于一般的决策树方法,具有更高的准确性。With the rapid development of interest rate marketization and big data,the banking industry has shown a clear“the 80/20 Rule”phenomenon.20%of customers occupy most of the bank’s assets.Therefore,how to prevent the loss of bank customers,especially the loss of high-quality customers,has become a growing concern of banks.It is particularly important to establish the model of high quality customer loss warning.Taking a commercial bank as an example,we redefine customer churn according to the actual bank marketing operation and focus on the bank’s high-quality customers.Firstly,AP clustering algorithm is used for attribute selection,and then random forest method is used to establish an early warning model of customer loss,so as to predict the possibility of customer loss of retail high-quality customers in the next three months.In order to verify the effectiveness of the proposed method,it is firstly verified on the UCI data set and a ideal result is obtained.Then,the proposed method is used to structure the prediction model of Bank Customer Churn.The experiment shows that the actual prediction effect of this model is more accurate than that of the general decision tree method.

关 键 词:客户流失 AP聚类 CART决策树 随机森林 预测模型 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象