检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊江 唐川[1] 陈明[1] XIONG Jiang;TANG Chuan;CHEN Ming(State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China)
机构地区:[1]成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川成都610059
出 处:《自然灾害学报》2021年第1期165-173,共9页Journal of Natural Disasters
基 金:国家重点研发计划项目(2017YFC1501004);国家自然科学基金项目(41672299)。
摘 要:近年来,受极端地震和极端天气的影响,泥石流灾害日益加剧,山区城镇泥石流风险问题逐渐引起大众的关注。泥石流的早期识别和监测预警作为防灾减灾的有效途径之一,已在山区城镇及重大工程建设区发挥重要的减灾作用。分析总结泥石流早期识别与监测预警技术方法和理论的目的在于掌握其发展现状与问题,进一步为山区城镇泥石流灾害防灾减灾提供有效应急对策。同时指出改进当前存在问题可为后期发展提供参考依据。本文通过文献综述法在阅读大量文献基础上,从技术与设备、预警理论与模型和监测预警体系3个方面对泥石流早期识别和监测预警研究进行回顾与评述,并针对其不足提出了加强深度学习在泥石流早期识别中运用,注重构建地面因素与天上因素耦合的泥石流预警模型,完善泥石流灾害应急系统的初步看法。In recent years,debris flow disasters have become more and more serious due to the influence of extreme earthquakes and extreme weather.This leads the risk of debris flow in mountain towns has attracted more and more public attention.Early identification,monitoring and early warning of debris flow,as one of the effective ways to prevent and reduce disasters,has played an important role in disaster reduction in mountainous towns and major engineering construction areas.The purpose of analyzing and summarizing the technology and theory of debris flow early identification,monitoring and early warning is to understand its development status and problems,as well provides emergency strategies for debris flow disaster prevention and mitigation in mountainous towns.Simultaneously,discovering and modifying existing problems in early identification,monitoring and early warning of debris flow can provide a reference for later development.This article reviews the early identification,monitoring and early warning research of debris flow from three aspects of technology and equipment,early warning theory and model,as well monitoring and early warning system construction based on reading a large number of literatures.In order to solve the existing problems,this paper proposes to strengthen the application of deep learning in early recognition,pay attention to the construction of a debris flow early warning model that coupled with ground factors and celestial factors,and improve the research of the debris flow disaster emergency system.
分 类 号:P642[天文地球—工程地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28