基于自然最近邻的密度峰值聚类算法  被引量:11

Density Peaks Clustering Algorithm Based on Natural Nearest Neighbor

在线阅读下载全文

作  者:汤鑫瑶 张正军[1] 储杰 严涛[1] TANG Xin-yao;ZHANG Zheng-jun;CHU Jie;YAN Tao(School of Science,Nanjing University of Science and Technology,Nanjing 210094,China)

机构地区:[1]南京理工大学理学院,南京210094

出  处:《计算机科学》2021年第3期151-157,共7页Computer Science

基  金:国家自然科学基金(11671205)。

摘  要:针对密度峰值聚类算法(Density Peaks Clustering,DPC)需要人为指定截断距离d c,以及局部密度定义简单和一步分配策略导致算法在复杂数据集上表现不佳的问题,提出了一种基于自然最近邻的密度峰值聚类算法(Density Peaks Clustering based on Natural Nearest Neighbor,NNN-DPC)。该算法无需指定任何参数,是一种非参数的聚类方法。该算法首先根据自然最近邻的定义,给出新的局部密度计算方法来描述数据的分布,揭示内在的联系;然后设计了两步分配策略来进行样本点的划分。最后定义了簇间相似度并提出了新的簇合并规则进行簇的合并,从而得到最终聚类结果。实验结果表明,在无需参数的情况下,NNN-DPC算法在各类数据集上都有优秀的泛化能力,对于流形数据或簇间密度差异大的数据能更加准确地识别聚类数目和分配样本点。与DPC、FKNN-DPC(Fuzzy Weighted K-nearest Density Peak Clustering)以及其他3种经典聚类算法的性能指标相比,NNN-DPC算法更具优势。Aiming at the problem that the density peak clustering(DPC)algorithm requires manually selected parameters(cutoff distance d c),as well as the problem of a poor performance on complex data sets caused by the simple definition of local density and the one-step assignment strategy,a new density peak clustering algorithm based on natural nearest neighbors(NNN-DPC)is proposed.The algorithm does not need to specify any parameters and is a non-parametric clustering method.Based on the definition of natural nearest neighbors,this algorithm firstly gives a new local density calculation formula to describe the distribution of data,and reveals the internal connection.A two-step assignment strategy is designed to divide the sample points.Finally,the similarity between clusters is defined,and a new cluster merging rule is proposed to merge the clusters to obtain the final clustering result.The experimental results show that without parameters,the NNN-DPC algorithm has excellent generalization ability on various types of data sets,and can more accurately identify the number and distribution of clusters on manifold data or data with large differences of density between clusters,and assign sample points to the corresponding clusters.Compared with the perfor-mance indicators of DPC,FKNN-DPC,and three other classic clustering algorithms,the NNN-DPC algorithm has a great advantage.

关 键 词:聚类算法 自然最近邻居 密度峰值 局部密度 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象