检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄文喜 祝芙英[1] 翟笃林 林剑[1] 卿芸 李新星[1] 杨剑[1] HUANG Wenxi;ZHU Fuying;ZHAI Dulin;LIN Jian;QING Yun;LI Xinxing;YANG Jian(Key Laboratory of Earthquake Geodesy,Institute of Seismology,Wuhan 430071,China)
机构地区:[1]中国地震局地震研究所地震大地测量重点实验室,武汉市430071
出 处:《大地测量与地球动力学》2021年第3期262-267,共6页Journal of Geodesy and Geodynamics
基 金:国家重点研发计划(2018YFC1503502);亚太空间合作组织地震研究二期项目(WX0519502)。
摘 要:在充分考虑TEC序列非平稳、非线性、高噪声特性前提下,以IGS提供的2017年电离层TEC格网数据为基准,运用BP神经网络和ARMA两种模型分别进行TEC 3 d预测,重点分析两种模型在不同季节时段、不同电离层活跃强度及不同样本长度下的TEC预测性能及精度。结果表明,在不同时段,两种模型均能很好地反映TEC的变化特性,其中ARMA模型在春、冬时段及整体预测精度上略优于BP神经网络。在平静期,两种模型的平均相对预测精度分别为87.3%和87.5%,预测效果相差较小;在活跃期,两种模型的平均相对预测精度分别为78.5%和75.5%,BP神经网络的精度比ARMA模型高3%。随着样本长度的增加,BP神经网络在21 d样本处预测效果最佳,ARMA模型的预测精度随样本长度的增加呈降低趋势。Considering that ionospheric total electron content(TEC)presents as non-stationary,nonlinear and high noise characteristics,we use ionospheric TEC data provided by international GPS service(IGS)to predict 3 days TEC using the back propagation(BP)neural network model and the ARMA model.We compare the prediction performance and accuracy of each model in different seasons,different ionospheric active intensity and different sample lengths.The results show that the two models can well reflect the change characteristics of TEC in different seasons,among which ARMA model is slightly better than BP neural network in spring and winter.In the quiet period,the average relative accuracy of the two models is 87.3%(BP)and 87.5%(ARMA),which means the predictive effect is similar.In the active period,the average relative accuracy of the two models is 78.5%(BP)and 75.5%(ARMA).The accuracy of BP neural network is 3%higher than that of ARMA model.With the increase of sample length,the accuracy of BP neural network model reaches the maximum on the 21st day,the prediction accuracy of ARMA model decreases with the increase of sample length.
分 类 号:P228[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3