检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁志明[1] 李沛鸿[1] 刘小生[1] YUAN Zhiming;LI Peihong;LIU Xiaosheng(School of Civil and Surveying and Mapping Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
机构地区:[1]江西理工大学土木与测绘工程学院,江西省赣州市341000
出 处:《大地测量与地球动力学》2021年第3期313-318,共6页Journal of Geodesy and Geodynamics
基 金:国家自然科学基金(41561091);江西省科技厅重点项目(20142BBE50024)。
摘 要:针对SVM模型在基坑沉降预测领域存在参数选择困难和基于单点数据建模的缺点,建立顾及邻近点的PSO-SVM模型。采用PSO-SVM模型进行最优训练样本数量研究,结果表明短期样本的预测效果最优。将邻近点沉降变形值作为影响基坑沉降的因素引入到改进的PSO-SVM模型中,实例表明,在短期样本数据下顾及邻近点的PSO-SVM模型的拟合精度优于PSO-SVM模型,而在中长期样本条件下预测精度不佳。针对该缺点提出组合多尺度一维小波分解函数和柯西分布函数来改进顾及邻近点的PSO-SVM模型,实验结果表明,顾及邻近点的改进PSO-SVM模型可有效解决参数选择困难和单点建模的问题,适用于不同样本数量下的沉降变形预测,具有较高的预测精度。In view of the disadvantages of the SVM model,such as difficulty in parameter selection and single-point data modeling in the field of settlement prediction of foundation pit,we establish a neighbor-point PSO-SVM model.Selecting the PSO-SVM model for the optimal training sample quantity research,the results show that short-term samples have the best prediction effect.We introduce the settlement deformation value of neighbor points as a factor affecting the settlement of foundation pit into the improved PSO-SVM model.The example shows that the fitting accuracy of the PSO-SVM model considering the neighbor points under short-term sample data is better than that of the PSO-SVM model.The prediction accuracy is poor under medium and long-term sample conditions.Aiming at this shortcoming,we propose a combination of multi-scale one-dimensional wavelet decomposition function and Cauchy distribution function to improve the PSO-SVM model that takes into account the neighbor points.The experimental results show that the improved PSO-SVM model effectively solves the difficulty in parameter selection and single-point data modeling.The model is suitable for the prediction of settlement deformation under different sample sizes,and has high prediction accuracy.
关 键 词:支持向量机 小波分析 粒子群优化算法 IPSO-SVM 基坑变形监测
分 类 号:P258[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.237.97