检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金武[1] 王书磊[2] 刘晓萌 夏晔 刘建伟[2] JIN Wu;WANG Shulei;LIU Xiaomeng;XIA Ye;LIU Jianwei(Freshwater fisheries Research Center,Chinese Academy of Fishery sciences,Wuxi Jiangsu 214081,China;Chinese Academy of Fishery Sciences,Beijing 10041,China)
机构地区:[1]中国水产科学研究院淡水渔业研究中心,江苏无锡214081 [2]中国水产科学研究院,北京100141
出 处:《渔业信息与战略》2021年第1期40-44,共5页Fishery Information & Strategy
基 金:中央级公益性科研院所基本科研业务费(2017JBFM11)。
摘 要:为了从大量专利数据中筛选渔业高价值专利,提高专利管理效率,从而间接促进专利转化,对中国水产科学研究院2008—2018年5404项专利进行价值高中低分类标注,获取这些专利在商业数据库Patentics中的16个参数并进行归一化处理,合并专利信息和对应的专利参数并利用人工神经网络建模。合并的数据中随机抽取70%的数据用于训练,30%的数据用于测试。结果表明:单隐层5个节点的人工神经网络模型准确度为73.59%,可以用于后续高价值专利辅助筛选工作。In order to screen high-value fisheries patents from massive patent data for improving the efficiency of patent management, and thus indirectly promoting patent conversion, 5 404 patents of Chinese Academy of Fishery Sciences from 2008 to 2018 were categorized and artificially labeled as high, middle and low value, and 16 parameters of these patents in the commercial database Patentics were obtained and normalized to merge patent information and corresponding patent parameters. 70% merged data were selected randomly for training, and 30% for testing. The results show that the accuracy of the artificial neural network model with 5 nodes in a single hidden layer is 73.59%, which can be used for subsequent screening of high-value patents.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30