人工神经网络在渔业高价值专利筛选中的应用——以中国水产科学研究院为例  

Application of artificial neural networks in the screening of high-value fisheries patents--Taking Chinese Academy of Fishery Sciences as an example

在线阅读下载全文

作  者:金武[1] 王书磊[2] 刘晓萌 夏晔 刘建伟[2] JIN Wu;WANG Shulei;LIU Xiaomeng;XIA Ye;LIU Jianwei(Freshwater fisheries Research Center,Chinese Academy of Fishery sciences,Wuxi Jiangsu 214081,China;Chinese Academy of Fishery Sciences,Beijing 10041,China)

机构地区:[1]中国水产科学研究院淡水渔业研究中心,江苏无锡214081 [2]中国水产科学研究院,北京100141

出  处:《渔业信息与战略》2021年第1期40-44,共5页Fishery Information & Strategy

基  金:中央级公益性科研院所基本科研业务费(2017JBFM11)。

摘  要:为了从大量专利数据中筛选渔业高价值专利,提高专利管理效率,从而间接促进专利转化,对中国水产科学研究院2008—2018年5404项专利进行价值高中低分类标注,获取这些专利在商业数据库Patentics中的16个参数并进行归一化处理,合并专利信息和对应的专利参数并利用人工神经网络建模。合并的数据中随机抽取70%的数据用于训练,30%的数据用于测试。结果表明:单隐层5个节点的人工神经网络模型准确度为73.59%,可以用于后续高价值专利辅助筛选工作。In order to screen high-value fisheries patents from massive patent data for improving the efficiency of patent management, and thus indirectly promoting patent conversion, 5 404 patents of Chinese Academy of Fishery Sciences from 2008 to 2018 were categorized and artificially labeled as high, middle and low value, and 16 parameters of these patents in the commercial database Patentics were obtained and normalized to merge patent information and corresponding patent parameters. 70% merged data were selected randomly for training, and 30% for testing. The results show that the accuracy of the artificial neural network model with 5 nodes in a single hidden layer is 73.59%, which can be used for subsequent screening of high-value patents.

关 键 词:人工神经网络 专利分析 专利价值 文本分类 

分 类 号:S9-9[农业科学—水产科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象