自动确定聚类中心的比较密度峰值聚类算法  被引量:6

Comparative density peaks clustering algorithm with automatic determination of clustering center

在线阅读下载全文

作  者:郭佳 韩李涛[1,2] 孙宪龙 周丽娟 GUO Jia;HAN Litao;SUN Xianlong;ZHOU Lijuan(College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao Shandong 266590,China;Key Laboratory of Geomatics and Digital Technology of Shandong Province(Shandong University of Science and Technology),Qingdao Shandong 266590,China)

机构地区:[1]山东科技大学测绘科学与工程学院,山东青岛266590 [2]山东省基础地理信息与数字化技术重点实验室(山东科技大学),山东青岛266590

出  处:《计算机应用》2021年第3期738-744,共7页journal of Computer Applications

基  金:山东省自然科学基金资助项目(ZR2017MD003)。

摘  要:针对密度峰值聚类算法(DPC)不能自动确定聚类中心,并且聚类中心点与非聚类中心点在决策图上的显示不够明显的问题,设计了一种自动确定聚类中心的比较密度峰值聚类算法(ACPC)。该算法首先利用距离的比较量来代替原距离参数,使潜在的聚类中心在决策图中更加突出;然后通过二维区间估计方法进行对聚类中心的自动选取,从而实现聚类过程的自动化。仿真实验结果表明,在4个合成数据集上ACPC取得了更好的聚类效果;而在真实数据集上的Accuracy指标对比表明,在Iris数据集上,ACPC聚类结果可达到94%,与传统的DPC算法相比提高了27.3%,ACPC解决了交互式选取聚类中心的问题。In order to solve the problem that the clustering centers cannot be determined automatically by Density Peaks Clustering(DPC)algorithm,and the clustering center points and the non-clustering center points are not obvious enough in the decision graph,Comparative density Peaks Clustering algorithm with Automatic determination of clustering center(ACPC)was designed.Firstly,the distance parameter was replaced by the distance comparison quantity,so that the potential clustering centers were more obvious in the decision graph.Then,the 2D interval estimation method was used to perform the automatic selection of clustering centers,so as to realize the automation of clustering process.Experimental results show that the ACPC algorithm has better clustering effect on four synthetic datasets;and the comparison of the Accuracy indicator on real datasets shows that on the dataset Iris,the clustering accuracy of ACPC can reach 94%,which is 27.3%higher than that of the traditional DPC algorithm,and the problem of selecting clustering centers interactively is solved by ACPC.

关 键 词:聚类分析 密度聚类 密度峰值 聚类中心 统计分析 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象