检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊育久 赵少华 鄢春华 邱国玉 孙华[5,6,7] 王艳林 秦龙君 XIONG Yujiu;ZHAO Shaohua;YAN Chunhua;QIU Gouyu;SUN Hua;WANG Yanlin;QIN Longjun(School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, Guangzhou 510275, China;Satellite Environment Center, Ministry of Ecology and Environment/State Environmental Protection Key Laboratory of Satellite Remote Sensing, Beijing 100094, China;School of Environment and Energy, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China;Research Center of Forestry Remote Sensing & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China;Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province, Changsha 410004, China;Key Laboratory of State Forestry & Grassland Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China;Guangzhou Municipal Planning and Natural Resources Bureau, Guangzhou 510000, China)
机构地区:[1]中山大学土木工程学院,广州510275 [2]广东省华南地区水安全调控工程技术研究中心,广州510275 [3]生态环境保护部卫星环境应用中心/国家环境保护卫星遥感重点实验室,北京100094 [4]北京大学深圳研究生院环境与能源学院,深圳518055 [5]中南林业科技大学林业遥感信息工程研究中心,长沙410004 [6]林业遥感大数据与生态安全湖南省重点实验室,长沙410004 [7]南方森林资源经营与监测国家林业与草原局重点实验室,长沙410004 [8]广州市规划和自然资源局,广州510000
出 处:《国土资源遥感》2021年第1期54-62,共9页Remote Sensing for Land & Resources
基 金:深圳市技术攻关项目“飞行智能环境监测机器人研究”(编号:JCYJ20180504165440088);国家自然科学基金项目“干旱区绿洲与荒漠植被蒸散发及其组分定量遥感反演研究”(编号:41671416)共同资助。
摘 要:绿地是城市生态资源的重要组成部分,定量评估其时空分布、构建多尺度监测方法体系,是自然资源管理、生态文明城市建设等领域的迫切需求。以城市植被和城市水体为例,从资源的数量、质量与生态价值3个层次,梳理对比主流的监测评价方法,探讨这些方法的优势与存在的问题,为我国新时期城市自然资源评估与监测提供方法参考。结果表明:①尽管基于样方的传统抽样方法可获得城市绿地的数量信息,但城市绿地高度斑块化特征限制了样方结果尺度推绎;②卫星遥感是监测城市绿地的有效手段,可准确获取绿地空间分布、面积、种类、质量变化等信息,但生物量(或蓄积量)、体积等信息需要米级(<5 m)遥感数据和其他新技术支持精细化研究;③无人机可获得亚米级(如<5 cm)数据,满足精细化监测需求,但受飞行管制、电池续航能力等限制,数据覆盖范围有限,且数据拼接等后处理复杂、传统的数据处理或反演算法可能不适用于亚米级空间分辨率数据;④城市绿地对城市热环境调节功能研究较多,但当前100 m(及更粗空间分辨率)的热红外地表温度数据难以支持绿地蒸腾降温机理等精细化研究。可见,城市绿地的精细化资源评估与监测仍面临诸多挑战。Urban green spaces are important ecological resources in cities;therefore,quantitative assessment of these green space resources as well as establishment of monitoring system at multiple scales is urgently required for assisting natural resources management and eco-city construction.The objectives of this study are to summarize major methods used to assess and monitor two typical urban green space resources,i.e.,vegetation and water bodies,in terms of quantity,quality,and ecosystem service value,and to discuss advantage and disadvantage of these methods.Some results have been obtained:①Although traditional sampling methods can obtain quantitative information for urban vegetation,fragmentation and patch of urban vegetation has limited scaling such information to larger scales;②Satellite remote sensing(RS),which can provide information such as spatial distribution,area,vegetation classification,and water quality,is an effective method to assess and monitor urban green spaces;nonetheless,detailed information,such as biomass and water volume,requires high spatial resolution(e.g.,<5 m)RS data as well as corresponding methods to process the data;③Unmanned aerial vehicle(UAV)can provide land surface information at high spatial resolution(e.g.,<5 cm);however,UAV has limitations,such as limited data coverage and challenged data processing;④Lots of studies focus on the relationship between urban green spaces and urban heat islands,but the mechanism,i.e.,how much energy is consumed by evapotranspiration and its impact on cooling effect,is less focused,which is likely due to a relatively low spatial resolution of available thermal infrared RS data.In summary,there are still lots of challenges in assessing and monitoring nature resources,including urban green spaces.
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222