检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘宇翔 张茂军[1] 颜深 李京蓓 彭杨 LIU Yuxiang;ZHANG Maojun;YAN Shen;LI Jingbei;PENG Yang(School of Systems Engineering, National University of Defense Technology, Changsha 410073, China)
机构地区:[1]国防科技大学系统工程学院,湖南长沙410073
出 处:《郑州大学学报(工学版)》2021年第1期56-62,共7页Journal of Zhengzhou University(Engineering Science)
基 金:国家自然科学基金资助项目(62071478)。
摘 要:初始图像对选取是增量式从运动中恢复结构的一个关键环节,但传统方法中存在计算效率低、对特殊场景不鲁棒的问题。因此,提出基于多任务学习的初始图像对选取网络以提高该过程的效率,并针对某些特殊场景容易出现初始图像对位于场景边缘的问题,提出结合场景连接图的初始对选取策略。该策略首先构建图像间的拓扑结构,通过图像间连接的疏密程度判断初始图像对是否处于场景中心,从而避免初始图像对处于场景边缘导致重建不完整的问题。对比传统SfM(structure from motion)中的初始图像对选取方法,结果表明:所提出的方法在多种不同场景中的选取速度提升5倍以上;同时,提出的结合场景图的选取策略可使得特殊场景中重建的空间点数量增加10倍,且重投影误差下降0.05 px,显著提升了在特殊场景中初始图像对选取的鲁棒性,证明了所提方法的有效性,在提高了效率的同时,能够很好地保证特殊场景重建的完整性和稳定性。The selection of the initial image pair was the key to the incremental structure from motion(SfM).However,traditional selection methods had some problems such as low computational efficiency and poor robustness in some special scenes.In this paper,an initial image pair selection network based on multi-task learning was proposed to improve the efficiency of selection,and a selection strategy combined with the scene connection graphs was proposed.The strategy firstly constructed the topological structure between the images,and then judged whether the initial image pair was in the center area of the scene based on the density of the connections between the images,so as to avoid the incomplete reconstruction in some special scenes due to the selected initial image pair being in the edge of the whole scene.Compared with traditional SfM(structure from motion)methods,the selecting speed of the proposed method in a variety of different scenes was increased by more than 5 times.At the same time,the proposed selection strategy combined with scene graphs could increase the number of reconstructed spatial points in special scenes by 10 times,and reduce the reprojection error by 0.05 px,which significantly improved the robustness of the initial image pair selection in special scenes.This proved the effectiveness of the proposed method.While improving the efficiency,it could ensure the completeness and stability of the reconstruction of special scenes.
关 键 词:增量式SfM 初始图像对选取 多任务学习 场景连接图
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229