改进粒子群算法在含分布式电源配电网优化重构中的应用  被引量:35

Application of improved particle swarm optimization in distributionnetwork reconfiguration with distributed generation

在线阅读下载全文

作  者:徐渊 Xu Yuan(State Grid Yingtan Power Supply Company,Yingtan 335001,Jiangxi,China)

机构地区:[1]国网鹰潭供电公司,江西鹰潭335001

出  处:《电测与仪表》2021年第3期98-104,共7页Electrical Measurement & Instrumentation

基  金:国家电网公司科技项目(5400-201925176A-0-0-00)。

摘  要:针对配电网中各种类型分布式电源接入所造成的配电网拓扑结构的复杂性,提出了一种改进粒子群优化算法应用于配电网重构,把粒子群算法和布谷鸟算法有效地结合在一起,采用两层种群框架。为了提高粒子群优化算法的全局搜索能力,采用中值聚类算法对下层粒子群进行重组,粒子群算法用于优化下层的各类小种群,然后将其发送到上层,使用布谷算法进行深度寻优。通过算例对多种情况进行仿真分析,验证改进算法在配电网重构中的优越性。结果表明,该算法能有效地降低配电网的有功网损,提高各节点的电压水平。本研究为我国分布式电源接入配电网的发展提供了参考和借鉴。Aiming at the complexity of distribution network topology caused by various types of distributed power access in distribution network,this paper proposes an improved particle swarm optimization algorithm applied to distribution network reconfiguration,which combines particle swarm optimization algorithm with cuckoo algorithm effectively,and adopts a two-layer population framework.In order to improve the global search ability of the particle swarm optimization algorithm,the median clustering algorithm is utilized to re-construct the underlying particle swarm,and the particle swarm optimization algorithm is utilized to optimize the various small populations in the lower layer,and then,send them to the upper layer,and the cuckoo algorithm is used for deep search.The simulation analysis of various cases is carried out by numerical examples to verify the superiority of the improved algorithm in distribution network reconstruction.The results show that the proposed algorithm can effectively reduce the active network loss of the distribution network and improve the voltage level of each node.This study provides reference for the development of distributed power supply access to distribution network in China.

关 键 词:分布式电源 配电网重构 粒子群算法 布谷鸟算法 有功网损 

分 类 号:TM933[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象