基于改进U-Net的视盘视杯分割方法的研究  被引量:2

Research on the segmentation of optic disc and cup based on modified U-Net

在线阅读下载全文

作  者:茅前 江旻珊[1] 魏静 MAO Qian;JIANG Minshan;WEI Jing(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093

出  处:《光学仪器》2021年第1期21-27,共7页Optical Instruments

摘  要:基于数字眼底图像进行视盘视杯分割是青光眼常用的诊断方法。为了更加精确地分割视盘视杯,提出了一种基于改进U-Net的视盘视杯分割方法。在传统U-Net的基础上,使用残差块改进了下采样部分,并使用卷积操作改进U-net中的跳层连接部分,使网络更加充分地获取特征信息。使用多种性能指标对训练的模型进行评价,结果表明,视盘模型和视杯模型在DRISHTI-GS数据集上的DICE系数分别达到了98.3%和97.2%,IOU系数分别达到了93.2%和88.5%。In the diagnosis of glaucoma,segmentation of optic cup and optic disc based on digital fundus image is a common diagnostic method.In order to segment the cup and disc accurately,we proposed a segmentation method based on the improved U-Net.Compared with the traditional UNet,a residual block was used to improve the down sampling part,and convolution part was used to improve the skip connection,so that the network could obtain more sufficient feature information.The Dice and IOU of the optic disc segmentation model and the optic cup segmentation model on DRISHTI-GS data set reached 98.3%and 97.2%,93.2%and 88.5%.

关 键 词:青光眼 视杯 视盘 U-NET 分割 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象