检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王婷[1] 管维[2] 李凡[2] 余杨 邓又斌[1] Wang Ting;Guan Wei;Li Fan;Yu Yang;Deng Youbin(Department of Medical Ultrasound,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China;Department of Urology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China)
机构地区:[1]华中科技大学同济医学院附属同济医院超声影像科,武汉430030 [2]华中科技大学同济医学院附属同济医院泌尿外科,武汉430030
出 处:《中华超声影像学杂志》2020年第12期1054-1059,共6页Chinese Journal of Ultrasonography
基 金:湖北省自然科学基金(2020CFB597)。
摘 要:目的探讨基于腹腔镜超声的影像组学方法在肾脏肿块良、恶性鉴别中的价值。方法回顾性纳入2012年12月至2018年12月在华中科技大学附属同济医院就诊并经手术病理证实的肾脏肿块患者119例,所有患者术前均行腹腔镜超声检查。根据病理将纳入患者分为良性组和恶性组,所有患者随机分为训练组(84例)和验证组(35例)。采用pyradiomics包提取良性组和恶性组病灶的107个影像组学特征。采用两独立样本t检验或Mann-Whitney U检验、Lasso回归分析对训练组中的特征进行筛选和建模,采用ROC曲线评估模型诊断效能,并通过验证组数据验证模型的稳定性。结果119例患者的119个病灶纳入研究(良性54个,恶性65个),最终筛选出5个差异有统计学意义的影像组学特征建模,在训练组和验证组中模型预测肾脏肿块病理良性和恶性ROC曲线下面积、敏感性、特异性、准确性分别为0.92、0.96、0.79、0.88和0.91、0.89、0.88、0.89。结论基于腹腔镜超声影像组学特征构建的预测模型对肾肿块良、恶性的诊断为经皮超声诊断探索了新途径,奠定了应用基础。Objective To investigate the value of radiomics in discriminating benign and malignant renal masses based on laparoscopic ultrasound imaging.Methods One hundred and nineteen patients undergoing laparoscopic surgical resection and histopathological analysis of renal masses in Tongji Hospital of Huazhong University of Science and Technology were retrospectively included from December 2012 to December 2018.All patients underwent preoperative laparoscopic ultrasound examinations.According to pathology,the patients were divided into benign group and malignant group,and all patients were randomly divided into training group(n=84)and verification group(n=35).One hundred seven radiomics features were extracted respectively in benign group and malignant group using pyradiomics.The independent sample t-test or Mann-Whitney U test and Lasso regression were used for features selection and model establishment in the training group.The performance of the model was evaluated by ROC curve,and the stability of the model was verified in the validation group.Results A total of 119 patients met inclusion criteria(benign:n=54;malignant:n=65),and 5 radiomics features with statistical significance were selected to establish predictive model for discrimination of malignant and benign renal masses.The area under the ROC curve,sensitive,specific and accurate were 0.92,0.96,0.79,0.88 in the training group and 0.91,0.89,0.88,0.89 in the validation group,respectively.Conclusions The predictive model based on radiomic features of laparoscopic ultrasonographic imaging provides a new approach for the discrimination of malignant and benign renal masses and lays a foundation for its application.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200