检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆至彬 瞿景辉 刘桦 何畅 张冰剑 陈清林 LU Zhibin;QU Jinghui;LIU Hua;HE Chang;ZHANG Bingjian;CHEN Qinglin(School of Materials Science and Engineering,Sun Yat-sen University,Guangzhou 510275,Guangdong,China;School of Chemical Engineering and Technology,Sun Yat-sen University,Zhuhai 519082,Guangdong,China;Guangdong Engineering Center for Petrochemical Energy Conservation,Sun Yat-sen University,Guangzhou 510275,Guangdong,China)
机构地区:[1]中山大学材料科学与工程学院,广东广州510275 [2]中山大学化学工程与技术学院,广东珠海519082 [3]广东省石化过程节能工程技术研究中心,广东广州510275
出 处:《化工学报》2021年第3期1496-1503,共8页CIESC Journal
基 金:国家自然科学基金项目(51776228);中央高校基本科研业务费专项资金(20lgpy01)。
摘 要:物理信息的神经网络(PINN)通过构建结构化的深度神经网络体系,可以有效地耦合基于物理定律的非线性偏微分方程组(如Navier-Stokes方程),能够在较少量的边界数据条件下解决监督学习问题。但是,PINN训练效果与边界条件的设置方式密切相关。本工作以具有内热源的二维稳态导热方程和平板间二维稳态对流传热方程为案例,基于软边界和硬边界两种设定方法构建PINN。将训练所得到的代理模型预测温度场输出,并将其与软件模拟结果进行验证分析,结果表明硬边界PINN代理模型预测能力较优。By constructing structured deep neural network architecture,physics-informed neural networks(PINN)can be trained to solve supervised learning tasks with limited amount of boundary data while effectively integrating any given laws of physics described by general nonlinear partial differential equations(i.e.,Navier-Stokes equation).However,the effect of PINN training is closely related to how the boundary conditions are set.In this work,two 2-D steady-state heat transfer problems,namely heat conduction model with internal heat source and convection heat transfer equation between plates are taken as examples.Two surrogate models are trained based on PINN by using two setting methods of soft boundary and hard boundary.The trained surrogate models are used to predict the output of temperature fields,which are verified and compared with the simulated data.The comparison results show that the prediction ability of PINN based on hard boundary is superior to the rival.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249