检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘琼昕[1,2] 宋祥 覃明帅 LIU Qiongxin;SONG Xiang;QIN Mingshuai(School of Computer Science and Technology,Beijing Institue of Technology,Beijing 100081,China;Beijing Engineering Applications Research Center on High Volume Language lnformation Processing and Cloud Computing,Beijing 100081,China)
机构地区:[1]北京理工大学计算机学院,北京100081 [2]北京市海量语言信息处理与云计算应用工程技术研究中心,北京100081
出 处:《北京理工大学学报》2021年第3期286-294,共9页Transactions of Beijing Institute of Technology
摘 要:在新闻推荐场景下,传统的基于文本特征的新闻推荐模型只考虑了词的共现关系,无法捕获词语的隐含词义和关联知识;而基于深度学习的推荐模型在融合知识图谱信息中仅仅考虑实体的信息,忽略了远距离实体之间的联系,造成实体之间的关联信息和深层次语义联系的缺失.针对该问题提出了一种基于知识增强的深度新闻推荐网络(deep knowledge-enhanced network,DKEN),利用长短期记忆网络提取知识图谱中的实体路径特征,补充到注意力网络中,然后针对不同的候选新闻动态地构建用户的特征.实验表明该实体路径信息能提高模型的效果,在F1指标上提升大约1%.In the news recommendation scenario,the traditional text-based feature recommendation model only considers the co-occurrence relationship of words,and cannot capture the implicit meaning and associated knowledge of words.The recommendation model based on deep learning only considers the information of the entity in the process of merging the knowledge graph information,ignoring the connection between the distant entities,resulting in the lack of related information and deep semantic relations between entities.A model named deep knowledge-enhanced network(DKEN)was proposed to solve the problem.Firstly,a long-short-term memory network was used to extract the entity path features from the knowledge graph.And then,path features were added to the attention network and the user feature was built dynamically based on the candidate news.Finally,some experiments were carried out.The results show that the entity path features can improve the model's effect and increase by about 1%on the F1 indicator.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33