基于GCN-LSTM的空气质量预测  被引量:15

Air Quality Prediction Based on GCN-LSTM

在线阅读下载全文

作  者:祁柏林 郭昆鹏 杨彬 杜毅明 刘闽 王继娜 QI Bo-Lin;GUO Kun-Peng;YANG Bin;DU Yi-Ming;LIU Min;WANG Ji-Na(University of Chinese Academy of Sciences,Beijing 100049,China;Shenyang Institute of Computing Technology,Chinese Academy of Sciences,Shenyang 110168,China;Shenyang Ecological Environment Monitoring Center,Liaoning Province,Shenyang 110000,China;Liaoning Advanced Equipment Manufacturing Base Construction Engineering Center,Shenyang 110001,China)

机构地区:[1]中国科学院大学,北京100049 [2]中国科学院沈阳计算技术研究所,沈阳110168 [3]辽宁省沈阳生态环境监测中心,沈阳110000 [4]辽宁省先进装备制造业基地建设工程中心,沈阳110001

出  处:《计算机系统应用》2021年第3期208-213,共6页Computer Systems & Applications

基  金:辽宁省“兴辽英才计划”(XLYC1808004)。

摘  要:随着我国环境监测技术的不断发展,环境空气质量的网格化监测体系越来越受到相关工作人员的青睐,为应对空气污染的网格化监测体系中的小型、微型监测站的空气质量预测问题,本文提出了一种基于GCN和LSTM的空气质量预测模型.首先利用GCN网络提取网格化监测体系中的小微型监测站之间的空间特征,然后再使用LSTM提取时间特征,最后使用线性回归层来综合时空特征并产生空气质量的预测结果.为了验证本文提出的预测模型的性能,我们使用了沈阳市浑南区的14个小微型监测站的空气质量监测数据进行实验.实验结果显示,基于GCN-LSTM的空气质量预测模型在空间关联较强的网格化监测中的小微型监测站上的预测结果的精度要优于单一的LSTM预测模型.With the development of environmental monitoring technology in China, the grid monitoring system of ambient air quality has received more attention from environmental workers. In order to solve the air quality prediction of small and miniature monitoring stations in the grid monitoring system of air pollution, we propose an air quality prediction model based on GCN and LSTM. First, GCN is applied to extract the spatial features between the small and miniature monitoring stations in the grid monitoring system. Then, LSTM is employed to extract the relevant temporal features. Finally, the linear regression layer is used to integrate the spatial and temporal features and get the prediction results of air quality. Furthermore, experiments are carried out on the air quality monitoring data from 14 small and miniature monitoring stations in Hunnan District, Shenyang, verifying the prediction effect of the proposed model. The experimental results show that the air quality prediction model based on GCN-LSTM is more accurate than the LSTM prediction model in terms of the prediction results on the small and miniature monitoring stations in the grid monitoring with strong spatial association.

关 键 词:网格化监测 GCN LSTM 空气质量预测 微型监测站 

分 类 号:X831[环境科学与工程—环境工程] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象