高移动性Jakes信道的学习与估计  被引量:4

Learning and estimation of high mobility Jakes channel

在线阅读下载全文

作  者:邵凯[1,2,3] 陈连成 刘胤 SHAO Kai;CHEN Liancheng;LIU Yin(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Chongqing Key Laboratory of Mobile Communications Technology,Chongqing 400065,China;Engineering Research Center of Mobile Communications,Ministry of Education,Chongqing 400065,China)

机构地区:[1]重庆邮电大学通信与信息工程学院,重庆400065 [2]移动通信技术重庆市重点实验室,重庆400065 [3]移动通信教育部工程研究中心,重庆400065

出  处:《系统工程与电子技术》2021年第4期1119-1125,共7页Systems Engineering and Electronics

基  金:重庆市科委项目(cstc2017shmsA130115)资助课题。

摘  要:在高移动场景下,信道具有快速时变性和非平稳特性,对信道的准确估计提出了新的挑战。针对高移动性Jakes信道,提出一种基于图像重建和恢复原理的信道学习估计网络。首先,根据Jakes信道矩阵中局部相关特性,构建快速超分辨卷积神经网络提取信道特征,并对信道插值完成信道图像建模。然后,利用去噪神经网络降低信道噪音的影响,进一步提高估计精度。最后,通过时域和频域的仿真测试,所提方案估计性能优于传统算法。在与现有基于深度学习最新方法比较中,所提方案也有性能优势,并且收敛速度更快。In high mobility scenarios,the channel has the characteristics of fast time-varying and non-stationary,which poses a new challenge to the accurate channel estimation.For high mobility Jakes channel,a channel learning and estimation network based on image reconstruction and recovery principle is proposed.Firstly,according to the local correlation characteristics of Jakes channel matrix,a fast super-resolution convolution neural network is constructed to extract channel features,and channel image modeling is completed by channel interpolation.Then,the denoising neural network is used to reduce the influence of channel noise and further improve the estimation accuracy.Finally,the simulation results in time domain and frequency domain show that the proposed scheme performs better than the traditional algorithm.Compared with the latest methods based on deep learning,the proposed scheme also has performance advantages and faster convergence speed.

关 键 词:信道估计 高移动信道 深度学习 图像去噪 超分辨重建 

分 类 号:TN911.72[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象