检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李丹阳 甘明鑫[1] Li Danyang;Gan Mingxin(School of Economics and Management,University of Science and Technology Beijing,Beijing 100083,China)
出 处:《数据分析与知识发现》2021年第2期94-105,共12页Data Analysis and Knowledge Discovery
基 金:国家自然科学基金项目(项目编号:71871019,71471016,71531013)的研究成果之一。
摘 要:【目的】利用多源信息融合构建音乐特征体系,解决音乐推荐冷启动问题,为用户提供个性化音乐推荐。【方法】采用基于多源信息融合的两段式推荐模型。通过神经网络融合多源信息,构建音乐特征体系,预测音乐的潜在因子向量,从而解决音乐冷启动问题,实现TopN推荐。【结果】在百万歌曲数据集上开展实验,所提出的方法与CNN模型相比,在F_(1)值上的提升幅度达到9.13%,在RMSE、MAE上的降低幅度分别达到8.08%和3.91%。【局限】两段式推荐方法较端到端的训练有更大的局限性;此外,使用梅尔频谱训练占用内存资源较高。【结论】所提方法构建音乐特征体系,解决了音乐推荐冷启动问题,提高了音乐推荐性能。[Objective]This paper creates a musical feature system based on multi-source information,aiming to address the cold start issue facing music recommendation and provide personalized services.[Methods]We proposed a two-stage model with multi-source information fused by neural network algorithm.Then,we built the musical feature system and predicted the potential factor vectors of music.Finally,we generated the Top N recommendation list for the users.[Results]We examined our model with the Million Song Dataset.Compared with other models such as CNN,the F_(1)value was improved by 9.13%,and the RMSE,MAE values were reduced by 8.08%and 3.91%,respectively.[Limitations]Our new method encounters more limits than the end-to-end training ones.And training with the Mel-frequency spectrum demands much more memory.[Conclusions]The proposed model improves the performance of music recommendation services.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15