检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石剑平[1] 阮丽媛 SHI Jianping;RUAN Liyuan(Department of System Science and Applied Mathematics,Kunming University of Science and Technology,Kunming 650500,China)
机构地区:[1]昆明理工大学理学院系统科学与应用数学系,云南昆明650500
出 处:《应用数学》2021年第2期419-426,共8页Mathematica Applicata
基 金:国家自然科学基金资助项目(11561034,11761040);云南省教育厅科学研究基金(2017ZZX133)。
摘 要:本文研究一类改进的时滞分数阶计算机病毒模型正平衡点的稳定性问题.利用线性化方法和拉普拉斯变换获得模型对应的线性化系统的特征方程,通过讨论特征方程的根以及横截条件研究时滞和正平衡点稳定性之间的关系,推导了Hopf分支出现时时滞临界值的计算公式,并选择恰当的系统参数进行数值模拟以验证理论分析的合理性.Stability of positive equilibrium point of a modified fractional-order delay computer virus model is studied in this paper.Firstly,characteristic equation of the model is obtained by using linearization method and Laplace transformation,then we theoretically explore the relationship between the delay and stability of equilibrium point basing on analysis of roots of characteristic equation and transversality condition,critical value of delay for the energence of Hopf bifurcation is achieved.Moreover,numerical simulations are made to verify the validity of the theoretical results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.162.63