检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪霖 郭佳琛 张璞 万腾 刘成[1] 杜少毅[2] WANG Lin;GUO Jiachen;ZHANG Pu;WAN Teng;LIU Cheng;DU Shaoyi(School of Information Science and Technology,Northwest University,Xi′an 710127,China;College of Artificial Intelligence,Xi′an Jiaotong University,Xi′an 710049,China)
机构地区:[1]西北大学信息科学与技术学院,陕西西安710127 [2]西安交通大学人工智能学院,陕西西安710149
出 处:《西北大学学报(自然科学版)》2021年第2期183-190,共8页Journal of Northwest University(Natural Science Edition)
基 金:国家自然科学基金资助项目(61971343);陕西省重点研发计划资助项目(2020KW-010);陕西省自然科学基础研究计划资助项目(2020JM-012)。
摘 要:针对含有噪声和外点的三维点云刚体配准问题,由于迭代最近点(iterative closest point,ICP)算法的配准精度较低,为此,该文提出了一种基于改进ICP算法的三维点云刚体配准方法。考虑到伪Huber损失函数对噪声和外点不敏感、鲁棒性强,首先,建立了基于伪Huber损失函数的三维点云刚体配准模型。其次,利用RGB-D点云数据中颜色信息辅助建立点云对应关系,以提高改进ICP算法中对应点匹配的准确性。最后,结合奇异值分解(singular value decomposition,SVD)和Levenberg-Marquardt(LM)的优化算法对三维点云刚体配准模型进行优化求解。实验结果表明,该文所提三维点云刚体配准方法的配准精度高,能够有效抑制噪声和外点对配准精度的影响。Aiming at the problem of rigid registration of three-dimensional(3D)point cloud with noise and outliers,due to the low registration accuracy of the iterative closest point(ICP)algorithm,a rigid registration method of 3D point cloud based on improved ICP algorithm is proposed in this paper.Firstly,considering that the pseudo Huber loss function is insensitive to noise and outliers,and has strong robustness,a 3D point cloud rigid registration model based on pseudo Huber loss function is established.Secondly,in order to improve the matching accuracy of the corresponding points in the improved ICP algorithm,color information of RGB-D point cloud data is used to assist in establishing the corresponding relationship between point clouds.Finally,singular value decomposition(SVD)and Levenberg-Marquardt(LM)optimization algorithms are combined to optimize the 3D point cloud rigid registration model.Experimental results show that the proposed rigid registration method of 3D point cloud can ensure high registration accuracy and effectively suppress the influence of noise and outliers on the registration accuracy as well.
关 键 词:三维点云刚体配准 伪Huber损失函数 RGB-D点云数据 噪声和外点
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28