检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Senuri De Silva Sanuwani Dayarathna Gangani Ariyarathne Dulani Meedeniya Sampath Jayarathna Anne M.P.Michalek
机构地区:[1]Department of Computer Science and Engineering,University of Moratuwa,Moratuwa 10400,Sri Lanka [2]Department of Computer Science,College of Science,Old Dominion University,Norfolk 23529,USA [3]Department of Communication Disorders and Special Education,Old Dominion University,Norfolk 23529,USA
出 处:《International Journal of Automation and computing》2021年第2期233-255,共23页国际自动化与计算杂志(英文版)
基 金:This work was supported by Old Dominion University,Norfolk,Virginia,USA and University of Moratuwa,Sri Lanka.We thank the participants of the system usability study.
摘 要:Attention deficit/hyperactivity disorder(ADHD)is a common disorder among children.ADHD often prevails into adulthood,unless proper treatments are facilitated to engage self-regulatory systems.Thus,there is a need for effective and reliable mechanisms for the early identification of ADHD.This paper presents a decision support system for the ADHD identification process.The proposed system uses both functional magnetic resonance imaging(fMRI)data and eye movement data.The classification processes contain enhanced pipelines,and consist of pre-processing,feature extraction,and feature selection mechanisms.fMRI data are processed by extracting seed-based correlation features in default mode network(DMN)and eye movement data using aggregated features of fixations and saccades.For the classification using eye movement data,an ensemble model is obtained with 81%overall accuracy.For the fMRI classification,a convolutional neural network(CNN)is used with 82%accuracy for the ADHD identification.Both ensemble models are proved for overfitting avoidance.
关 键 词:Attention deficit/hyperactivity disorder(ADHD) functional magnetic resonance imaging(fMRI) eye movement data seed-based correlation ensembled model convolutional neural network(CNN) default mode network(DMN) SACCADES FIXATIONS ADHD-Care decision support system(DDS)
分 类 号:R749.94[医药卫生—神经病学与精神病学] TP315[医药卫生—临床医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.248.121