检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:夏婷 王明亮 易宗键 董梦艺 黄佳 梁长虹[2] 刘再毅 XIA Ting;WANG Mingliang;YI Zongjian;DONG Mengyi;HUANG Jia;LIANG Changhong;LIU Zaiyi(School of Medicine,South China University of Technology,Guangzhou 510006,China;Department of Radiology,Guangdong Provincial People’s Hospital Guangdong Academy of Medical Sciences,Guangzhou 510080,China;Department of Radiology,Zhongshan Hospital,Fudan University,Shanghai 200032,China;School of Biomedical Sciences and Engineering,South China University of Technology,Guangzhou 510006,China)
机构地区:[1]华南理工大学医学院,广东广州510006 [2]广东省人民医院(广东省医学科学院)放射科,广东广州510080 [3]复旦大学附属中山医院放射科,上海200032 [4]华南理工大学生物医学科学与工程学院,广东广州510006
出 处:《中国医学影像技术》2021年第3期396-400,共5页Chinese Journal of Medical Imaging Technology
基 金:国家重点研发计划(2017YFC1309100,2017YFC1309102,2017YFC1309104);国家杰出青年科学基金(81925023);国家自然科学基金面上项目(81771912)。
摘 要:目的观察基于CT影像组学模型术前预测胰腺神经内分泌肿瘤(PNET)病理分级(G1和G2/3级)的价值。方法回顾性分析145例经病理证实的PNET,分为训练组91例、验证组54例,2组各自来源于同一医疗机构。基于训练组动脉期和门脉期CT图像提取PNET影像组学特征,以Pearson相关分析及ReliefF算法进行筛选;采用Logistic回归,针对差异有统计学意义的参数构建预测PNET病理分级的联合影像组学模型,绘制受试者工作特征(ROC)曲线,计算曲线下面积(AUC),以敏感度、特异度及准确率评估其诊断效能,并以验证组加以验证。结果基于训练组动脉期与门脉期CT图像构建的联合影像组学模型具有良好预测效能,AUC为0.86[95%CI(0.78,0.94)],截断值为0.63时,敏感度为78.95%,特异度为85.29%,准确率为81.32%。验证组预测PNET病理分级AUC为0.85[95%CI(0.75,0.95)],截断值为0.63时,敏感度为84.61%,特异度为75.00%,准确率为79.63%。结论基于增强CT图像构建的影像组学模型对于术前预测PNET病理分级具有一定价值。Objective To explore the value of CT radiomics model for preoperative predicting pathological grade(G1 and G2/3)of pancreatic neuroendocrine tumors(PNET).Methods A total of 145 patients with pathologically confirmed PNET were included,including 91 in training group and 54 in validation group,in each group coming from one same hospital.Radiomics features of PNET were extracted based on arterial phase and portal venous phase CT images in training group.Pearson correlation analysis and ReliefF algorithm were used to select radiomics features,and Logistic regression was used to construct radiomics model for predicting pathological grade of PNET.Then receiver operating characteristic(ROC)curve was drawn,and the diagnostic performance of model was evaluated with area under the curve(AUC),accuracy,sensitivity and specificity,and were validated in validation group.Results The combined radiomics model based on arterial phase and portal venous phase CT image achieved good prediction performances.In training group,the AUC was 0.86(95%CI[0.78,0.94]),the intercept value was 0.63,the sensitivity,specificity and accuracy was 78.95%,85.29%and 81.32%,respectively.In the validation group,the AUC was 0.85(95%CI[0.75,0.95]),the intercept value was 0.63,the sensitivity,specificity and accuracy was 84.61%,75.00%and 79.63%,respectively.Conclusion The radiomics model based on contrast-enhanced CT images had certain value for preoperative prediction of pathological grade of PNET.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.202.164