基于Cascade R-CNN 改进的花色布匹瑕疵智能识别方法  被引量:3

Improved Intelligent Recognition Method of Pattern and Color Fabric DefectsBased on Cascade R-CNN

在线阅读下载全文

作  者:陆贵家 LU Guijia(Guangdong University of Technology,Guangzhou 510006,China)

机构地区:[1]广东工业大学,广东广州510006

出  处:《现代信息科技》2020年第23期20-24,共5页Modern Information Technology

摘  要:花色布匹在生产的过程中,其相比于单色布匹的生产需要引入更多的加工工序,比如印花、后整理等工序,经常导致花色布匹产生更多的瑕疵类别。为了实现花色布匹瑕疵的智能识别与检测,文章给出一种基于Cascade R-CNN改进的花色布匹瑕疵智能识别与检测方法,实验结果表明,相比同类算法,文章提出的方法在花色布匹瑕疵数据集上识别的准确率提升了2.39%,mAP评估指标提高了3.83%的显著效果。In the process of patterned and color fabric production,it needs to introduce more processing procedures than the production of monochrome fabric,such as printing and finishing,etc,which often leads to more defect categories in the pattern and color fabric.In order to realize the intelligent recognition and detection of the defects of the pattern and color fabric,this paper presents an improved method of intelligent recognition and detection of the pattern and color fabric defects based on Cascade R-CNN.The experimental results show that compared with similar algorithms,the method proposed in this paper improves the accuracy of recognition on the pattern and color fabric defect data set by 2.39%,and the mAP evaluation index is improved by 3.83%.

关 键 词:花色布匹瑕疵 目标识别 缺陷检测 深度学习 卷积神经网络 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TS107[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象