基于低秩模型的电力能源大数据异常修正方法研究  被引量:3

Research on Correcting Method for Abnormal Big Data of Electric Energy Based on Low Rank Model

在线阅读下载全文

作  者:马草原 MA Caoyuan(State Grid Tianjin Electric Power Company,Tianjin 300000,China)

机构地区:[1]国网天津市电力公司,天津300000

出  处:《自动化仪表》2021年第3期90-93,97,共5页Process Automation Instrumentation

摘  要:传统的电力能源大数据异常修正方法存在搜索次数过多问题.会造成异常数据辨识结果异常、修正结果不准确。为此,引入低秩模型.改善以上问题。采用低秩模型处理电力能源数据样本.去除样本数据噪声;在离线模式下,通过训练支持向量机对数据样本进行聚类;在联机模式下,利用滑动窗口辨识异常数据;针对单个或多个不相关的异常数据.依据基尔霍夫电流定律完成修正。试验结果表明,与以往的大数据修正方法相比,设计的基于低秩模型的电力能源大数据异常修正方法残差值更低,并且电力负荷修正后.与实际负荷相符。The traditional correction method for anomaly big data brings out the problem of too many search times,which makes the identification result of abnormal data being iregular and the correction result being inaccurate.Therefore,the low rank model is introduced to solve above problems.Low-rank model is used to process power energy data samples for removing sample data noise.Cluster data samples by training support vector machines in offline mode are conducted.In online mode,the sliding window is used to identify abnormal data for single or multiple unrelated abnormal data.The correction is completed according to Kirchhoff's current law.The experimental resuls show that,compared with the previous big data correction methods,the residual value of the power energy big data anomaly correction method based on the low rank model is lower,and the power load correction is consistent with the actual load.

关 键 词:低秩模型 电力能源 大数据异常 修正方法 支持向量机 电力负荷 基尔霍夫电流定律 聚类 

分 类 号:TH-39[机械工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象