基于深度学习的VGG16图像型火灾探测方法研究  被引量:19

Research on fire detection of improved VGG16 image recognition based on deep learning

在线阅读下载全文

作  者:蒋珍存 温晓静 董正心 孙亦劼 蒋文萍 JIANG Zhen-cun;WEN Xiao-jing;DONG Zheng-xin;SUN Yi-jie;JIANG Wen-ping(School of Elcctrical and Electronic Engincering,Shanghai Institutc of Technology,Shanghai 201418,China;Shanghai Jiaotong University,Shanghai 200240,China)

机构地区:[1]上海应用技术大学电气与电子工程学院,上海201418 [2]上海交通大学,上海200240

出  处:《消防科学与技术》2021年第3期375-377,共3页Fire Science and Technology

基  金:国家自然科学基金项目(61703279)。

摘  要:为了快速、有效地检测不同场景下的火灾信息,基于深度迁移学习设计了一种改进VGG16的图像型火灾检测方法。搜集不同场景下的照片,使用离线数据增强技术增加样本数量,对VGG16进行改进,并使用迁移学习的方法训练火灾识别模型。结果表明:改进的VGG16网络对于火灾现场的图片分类识别准确率为98.7%,优于Resnet50网络和Densenet121网络,可快速、准确地检测到火灾信息。In order to quickly and effectively detect fire in different scenes and avoid missing the best time for fire fighting,an improved VGG16 image recognition fire detection method is designed based on deep transfer learning.Collect photos of fire and no fire in different scenarios,use offline data enhancement methods to increase the number of samples,improve VGG16,and use transfer learning methods to train fire recognition models.The experimental results show that the improved VGG16 model has a 98.7%accuracy in classification and recognition of pictures with and without fire,which is better than the Resnet50 model and the Densenet121 model.It is proved that the method has high accuracy in identifying the situation of flames after the fire,and can detect the fire quickly and accurately.

关 键 词:消防 火灾检测 图像分类 VGG16 深度学习 

分 类 号:X932[环境科学与工程—安全科学] TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象