基于异核卷积双注意机制的立场检测研究  被引量:1

Research on Stance Detection Based on Dual Attention Mechanism of Heteronuclear Convolution

在线阅读下载全文

作  者:赵圆丽 梁志剑[1] ZHAO Yuanli;LIANG Zhijian(College of Big Data,North University of China,Taiyuan 030051,China)

机构地区:[1]中北大学大数据学院,太原030051

出  处:《计算机工程与应用》2021年第8期119-125,共7页Computer Engineering and Applications

基  金:山西省纪检信访大数据智能情报管理系统开发基金(201703D121025);山西省回国留学人员科研基金(2017-093)。

摘  要:针对当前立场检测任务中目标短语在文本中隐式出现导致分类效果差的问题,提出一种基于异核卷积双注意机制(HCDAM)的立场检测模型。采用三段式策略,为提高目标短语和文本的特征表示能力,采用Bert预训练模型获得基于字符级的包含上下文的词向量表示;为提高隐式目标短语的抽取能力,采取异核卷积注意模式获取含不同位置和语义信息的卷积特征;通过再注意力机制利用显隐式目标短语对文本进行立场信息特征抽取,通过softmax分类器进行分类。基于NLPCC语料的实验结果表明,通过采用异核卷积双注意策略,相比Bert-Condition-CNN模型,在总数据集上平均分类准确率提高了0.108,在5个话题上分类准确率分别提高了0.146、0.046、0.133、0.047、0.056。Aiming at the problem that the target phrase in the current stance detection task appears implicitly in the text,which leads to the poor classification effect,a stance detection model based on Heteronuclear Convolution Double Attention Mechanism(HCDAM)is proposed.This method adopts a three-stage strategy.Firstly,in order to improve the feature representation ability of target phrase and text,the Bert pretraining model is used to obtain the word vector representation with context based on character level.Then,in order to improve the extraction ability of implicit target phrase,the heteronuclear convolution attention way is used to obtain the convolution features with different stance and semantic information.Finally,stance information feature is extracted by using explicit and implicit target phrases through re attention mechanism,and classified by softmax classifier.The experimental results based on NLPCC corpus show that,compared with the Bert-condition-CNN model,the average classification accuracy on the total dataset is improved by 0.108,and the classification accuracy on five topics is improved by 0.146,0.046,0.133,0.047 and 0.056 respectively.

关 键 词:中文微博 立场检测 注意力机制 隐式特征 深度学习 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象