检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李代华[1] LI Daihua(Wenshan Branch,Yunnan Province Hydrology and Water Resources Bureau,Wenshan 663000,China)
机构地区:[1]云南省水文水资源局文山分局,云南文山663000
出 处:《水资源与水工程学报》2021年第1期97-102,共6页Journal of Water Resources and Water Engineering
摘 要:为提高径流预测精度,研究主成分分析(PCA)、斑鬣狗优化(SHO)算法与支持向量机(SVM)、BP神经网络相融合的预测方法。在样本数据筛选上选取PCA方法进行数据降维,使数据样本简洁且更具代表性。利用SHO算法优化SVM关键参数及BP神经网络权阈值,分别提出PCA-SHO-SVM、PCA-SHO-BP径流量预测模型,并与SHO-SVM、PCA-SVM、SVM和SHO-BP、PCA-BP、BP模型的预测结果作对比,通过云南省龙潭水文站年径流量及枯水期月径流量预测为例进行验证。结果表明,PCA-SHO-SVM、PCA-SHO-BP模型对实例年径流量预测的平均相对误差分别为2.34%、2.50%,对月径流量预测的平均相对误差分别为6.15%、6.08%,预测精度均优于其他6种模型,具有较高的预测精度和更强的泛化能力。To improve the accuracy of runoff prediction,the prediction method that combines principal component analysis(PCA),spotted hyena optimizer(SHO)algorithm,support vector machine(SVM),and BP neural network were studied.The PCA method was selected for data dimensionality reduction in sample data screening to make the data sample concise and more representative.Then SHO algorithm was used to optimize SVM key parameters and BP neural network weight threshold respectively,and the corresponding runoff prediction model of PCA-SHO-SVM and PCA-SHO-BP were proposed accordingly.Furthermore,SHO-SVM,PCA-SVM,SVM and SHO-BP,PCA-BP,BP models were constructed to compare with these two models,and the prediction of annual runoff and monthly runoff in the dry season of Longtan Station in Yunnan Province were used for verification.The results show that the average relative error of PCA-SHO-SVM and PCA-SHO-BP models is 2.34%and 2.50%for the annual runoff prediction of this station,and 6.15%and 6.08%for the monthly runoff prediction,respectively.The prediction accuracy of both models are better than the other 6 models,with higher prediction accuracy and stronger generalization ability.
关 键 词:径流预测 主成分分析 斑鬣狗优化算法 支持向量机 BP神经网络 数据降维 参数优化
分 类 号:TV121.4[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185