检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁波 卢军[1] 曹阳 Liang Bo;Lu Jun;Cao Yang(College of Mechanical&Electrical Engineering,Shaanxi University of Science and Technology,Xi'an,Shaanxi 710021,China)
机构地区:[1]陕西科技大学机电工程学院,陕西西安710021
出 处:《激光与光电子学进展》2021年第2期326-332,共7页Laser & Optoelectronics Progress
基 金:陕西省科技厅自然科学基金(2016GY-049)。
摘 要:基于卷积神经网络的深度学习方法对钢轨表面损伤的自动化检测起到非常重要的推动作用,因此提出一种基于卷积神经网络的钢轨表面损伤检测方法。首先,在经典U-Net的收缩路径和扩展路径之间增加一个分支网络,可以辅助U-Net输出理想的分割图。然后,将Type-I RSDDs高速铁路轨道数据集作为检测样本,使用数据增强的手段扩增检测样本后馈入改进的U-Net中进行训练和测试。最后,采用评价指标对所提方法进行评估。实验结果表明,所提方法的检测准确率达到99.76%,相比于其他方法的最高水平提高6.74个百分点,说明所提方法可以显著提高检测准确率。The deep learning method based on convolutional neural network plays a very important role in promoting the automatic detection of rail surface damage.Therefore,a method based on convolutional neural network for rail surface damage detection is proposed.First,a branch network is added between the contraction path and extension path of the classic U-Net can assist U-Net to output the ideal segmentation graph.Then,the type-I RSDDs high-speed railway track dataset is taken as the test sample,and the test sample is amplified by means of data enhancement and fed into the improved U-Net for training and testing.Finally,the evaluation index is used to evaluate the proposed method.The experimental results show that the detection accuracy of the proposed method reaches 99.76%,which is 6.74 percentage higher than the highest level of other methods,indicating that the proposed method can significantly improve the detection accuracy.
关 键 词:机器视觉 深度学习 损伤特征识别 数据增强 改进的U-Net图形分割网络 无损检测
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3