检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周文文 万晓冬[1] 李文 ZHOU Wenwen;WAN Xiaodong;LI Wen(College of Automation«Nanjing University of Aeronautics and Astronautics,Nanjing 211106,CHN)
机构地区:[1]南京航空航天大学自动化学院,南京211106
出 处:《半导体光电》2021年第1期121-126,共6页Semiconductor Optoelectronics
摘 要:首先采用分类算法对MSTAR数据集进行十类目标分类识别、三类目标的变体分类识别,然后根据分类调参过程中的先验知识修正证据即分类器输出,构造基本置信函数,并采用改进的合成规则即基于冲突系数K和Pignistic概率距离相结合的冲突度量方法,对冲突证据采用按比例分配冲突度的合成规则进行合成。未融合时,三类目标的变体分类准确率最高为93.553%,融合后三类目标变体分类识别率为95.092%,提升幅度约是理想状态的37%。In this paper,the classification algorithm is used to classify and recognize ten types of targets and three types of target variants on the MSTAR data set.Then,according to the prior knowledge in the classification adjustment process,the evidence is corrected,namely the output of the classifier,and the basic confidence function is constructed.The improved combination rule is a conflict measurement method based on the combination of the conflict coefficient K and the Pignistic probability distance,and the conflict evidence is synthesized by the combination rule that distributes the conflict degree in proportion.Without fusion,the highest classification accuracy rate of the three types of target variants is 93.553%.After fusion,the classification and recognition rate of the three types of target variants is 95.092%,which is increased by about 37% of that of the ideal state.
关 键 词:D-S证据理论 数据融合 目标分类 冲突分配 MSTAR数据集 Pignistic概率距离
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7