检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈秀锋 吴阅晨 邴其春 聂蕊蕊 CHEN Xiu-feng;WU Yue-chen;BING Qi-chun;NIE Rui-rui(School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,Shandong,China)
机构地区:[1]青岛理工大学,机械与汽车工程学院,山东青岛266520
出 处:《交通运输系统工程与信息》2021年第2期51-57,共7页Journal of Transportation Systems Engineering and Information Technology
基 金:国家自然科学基金(51678320);山东省自然科学基金(ZR2019MG012);山东省重点研发计划(2019GGX101038)。
摘 要:针对城市道路车流量检测中车辆误分类问题,提出一种基于类锚虚拟线圈的多流向车流量检测算法。首先,采集车辆图像样本并随机裁剪以构建小客车、公交车和摩托车的均衡数据集,通过DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法聚类获得3类车型的高度、宽度尺寸,以此校正场景车辆识别线圈尺寸,布设物体检测线圈与组合车辆识别线圈;其次,基于均衡数据集训练ResNet18卷积神经网络完成车辆类型判断;最后,采用改进的核相关滤波器追踪算法追踪车辆轨迹,通过计数线完成多流向车流量检测。验证分析表明:对单向车流,高峰、平峰正检率均值提升了5.09%、4.57%,误检率均值降低了5.31%、2.35%;多向车流中,直行车流的高峰、平峰正计率提升了5.01%、5.99%,左转车流的高峰、平峰正计率提升了4.29%、4.56%。To reduce the problem of vehicle misclassification in urban road traffic flow detection,a multi-direction traffic flow detection algorithm based on anchor-like virtual loops is proposed.Firstly,the vehicle image samples are collected and randomly divided to construct the balanced data set of passenger cars,buses,and motorcycles.The height and width of three types of vehicles are obtained by clustering with the DBSCAN algorithm,so as to correct the size of scene vehicle recognition loops,set object detection loops,and combined vehicle recognition loops.Secondly,the ResNet18 convolutional neural network is trained based on balanced data set to distinguish vehicles.Finally,the improved kernel correlation filter tracking algorithm is used to track the vehicle trajectory,and the multi-direction traffic flow detection is completed through the counting line.The experiment analysis shows that for one-way traffic flow,the average positive detection rate at peak and non-peak hours increases by 5.09%and 4.57%,and the average false detection rate decreases by 5.31%and 2.35%.In the multi-directional traffic flow,the positive counting rate for straight traffic flow at peak and non-peak hours is increased by 5.01%and 5.99%,while that for left-turn traffic flow increased by 4.29%and 4.56%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.8.11