基于群组与密度的轨迹聚类算法  被引量:3

Trajectory Clustering Algorithm Based on Group and Density

在线阅读下载全文

作  者:俞庆英 赵亚军[1,2] 叶梓彤 胡凡 夏芸 YU Qingying;ZHAO Yajun;YE Zitong;HU Fan;XIA Yun(School of Computer and Information,Anhui Normal University,Wuhu,Anhui 241002,China;Anhui Provincial Key Laboratory of Network and Information Security,Anhui Normal University,Wuhu,Anhui 241002,China)

机构地区:[1]安徽师范大学计算机与信息学院,安徽芜湖241002 [2]安徽师范大学网络与信息安全安徽省重点实验室,安徽芜湖241002

出  处:《计算机工程》2021年第4期100-107,共8页Computer Engineering

基  金:国家自然科学基金(61702010,61972439)。

摘  要:现有基于密度的聚类方法主要用于点数据的聚类,不适用于大规模轨迹数据。针对该问题,提出一种利用群组和密度的轨迹聚类算法。根据最小描述长度原则对轨迹进行分段预处理找出具有相似特征的子轨迹段,通过两次遍历轨迹数据集获取基于子轨迹段的群组集合,并采用群组搜索代替距离计算减少聚类过程中邻域对象集合搜索的计算量,最终结合群组和密度完成对轨迹数据集的聚类。在大西洋飓风轨迹数据集上的实验结果表明,与基于密度的TRACLUS轨迹聚类算法相比,该算法运行时间更短,聚类结果更准确,在小数据集和大数据集上的运行时间分别减少73.79%和84.19%,且运行时间的减幅随轨迹数据集规模的扩大而增加。The existing density-based clustering methods are mainly used for point data clustering,and not suitable for largescale trajectory data.To address the problem,this paper proposes a trajectory clustering algorithm based on group and density.According to the principle of Minimum Description Length(MDL),the trajectories are preprocessed by segments to find out the sub trajectories with similar characteristics.The group set based on the sub trajectories is obtained by traversing the trajectories dataset twice,and the group search is used to replace the distance calculation to reduce the calculation amount required for the neighborhood object set search in the clustering process.Finally,the trajectory data set is clustered by combining the group and density.Experimental results on Atlantic hurricane track dataset show that,compared with the densitybased TRACLUS track clustering algorithm,the running time of the proposed algorithm is less and the clustering results are more accurate.The running time on the small dataset and large dataset is reduced by 73.79%and 84.19%respectively,and the reduction of running time increases with the expansion of track dataset.

关 键 词:群组 密度 群组可达 邻域搜索 轨迹聚类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象