检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈如清[1] 李嘉春 俞金寿[3] CHEN Ru-qing;LI Jia-chun;YU Jin-shou(College of Mechanical and Electrical Engineering,Jiaxing University,Jiaxing 314001,China;College of Mathematics,Physics and Information Engineering,Jiaxing University,Jiaxing 314001,China;Research Institute of Automation,East China University of Science and Technology,Shanghai 200237,China)
机构地区:[1]嘉兴学院机电工程学院,浙江嘉兴314001 [2]嘉兴学院数理与信息工程学院,浙江嘉兴314001 [3]华东理工大学自动化研究所,上海200237
出 处:《控制与决策》2021年第4期925-932,共8页Control and Decision
基 金:浙江省基础公益研究计划项目(LGG18F030011);国家自然科学基金项目(61603154)。
摘 要:受道路环境和人为因素影响,实际交通系统可视为一个复杂的非线性动力系统,交通流数据具有较强的非线性、时变性和易受随机噪声影响等特征.针对复杂环境下的短时交通流预测问题,提出一种基于烟花差分进化混合算法-极限学习机的短时交通流预测方法.采用奇异谱分析方法滤除原始交通流数据中包含的噪声成分,降噪后的交通流数据用于训练极限学习机(ELM)网络预测模型.进行相空间重构,利用C-C算法确定ELM网络的结构和关键参数.通过融合烟花算法和差分进化算法提出一种烟花差分进化混合算法,可有效提高基本算法的整体优化性能.将改进的混合优化算法用于优化ELM网络的权阈值(结构为9-11-1,维数为110),建立短时交通流预测模型.测试与应用结果表明,所构建的短时交通流预测模型具有较高的预测精度和较强的泛化能力(均方误差为7.75,平均绝对百分比误差为0.086 7),预测值与实际值的拟合程度较好.Affected by road condition and human factors, the practical traffic system can be considered as a complex nonlinear dynamical system and the traffic flow data have the properties of strong non-linearity, time-variety and susceptibility to random noises. To solve the problems of short-term traffic flow forecasting in complex environment, a prediction method based on the hybrid FWADE-ELM is proposed. The singular spectrum analysis(SSA) technique is used to filter the noise existing in the original traffic flow data and then the ELM neural network prediction model is trained with the preprocessed data. The structure and key parameters of ELM network are determined using the C-C algorithm after reconstructing phase space. A hybrid optimization method integrating the fireworks algorithm with the differential evolution algorithm is developed to improve the optimal performance of the basic algorithms. The ELM network forecasting model is built and its weights and biases(9-11-1 structure and 110 dimensions) are optimized using the proposed FWADE hybrid algorithm. The results of property testing and practical application show that this short-term traffic flow forecasting model has higher forecasting accuracy and better generalization ability, and the predicted values comply well with the actual values.
关 键 词:智能交通系统 短时交通流预测 极限学习机 奇异谱分析 混合优化算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术] U491[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.79