检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张娇娇 张少谱 冯涛[2] ZHANG Jiao-jiao;ZHANG Shao-pu;FENG Tao(Department of Mathematics and Physics,Shijiazhuang Tiedao University,Shijiazhuang 050043,Hebei,China;School of Sciences,Hebei University of Science and Technology,Shijiazhuang 050018,Hebei,China)
机构地区:[1]石家庄铁道大学数理系,河北石家庄050043 [2]河北科技大学理学院,河北石家庄050018
出 处:《山东大学学报(理学版)》2021年第3期96-110,共15页Journal of Shandong University(Natural Science)
基 金:国家自然科学基金资助项目(61573127);河北省自然科学基金资助项目(A2018210120,A2020208004);河北省人才工程培养资助项目(A2017002112,A201901049);河北省高等学校科学技术研究项目(QN2019062)。
摘 要:首先定义了2个新的优势关系,并根据总体评估的定义和对个别属性的特殊要求,利用毕达哥拉斯模糊加性算子将每个对象的属性值聚合成整体评价,得到了2个广义优势粗糙集模型,利用这2个模型研究了优势毕达哥拉斯模糊系统的属性约简问题;其次,引入参数β∈[0,1],定义了β优势关系,得到广义β优势粗糙集模型,并进一步研究了优势毕达哥拉斯模糊决策系统的属性约简问题;最后用一个例子来说明本文所提出方法的实用性和有效性。First, two new dominant relationships are defined, and according to the definition of the overall assessment and the special requirements of individual attributes, Pythagorean fuzzy additive operator is used to aggregate the individual attribute values of each object into an overall evaluation, and two generalized dominant rough set models are obtained. Using these two models, the attribute reduction problem of dominant Pythagorean fuzzy systems is studied. Secondly, the parameter β∈[0,1] is introduced, the β dominant relationship is defined, the generalized β dominant rough set model is obtained, and the above attribute reduction problem is further studied. Finally, an example is used to illustrate practicability and effectiveness of the proposed method.
关 键 词:优势关系 广义优势粗糙集 属性约简 优势毕达哥拉斯系统 广义β优势粗糙集
分 类 号:O236[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.218.162