检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:利云云 周徐斌 陈卫东[1] 刘兴天[2] LI Yun-yun;ZHOU Xu-bin;CHEN Wei-dong;LIU Xing-tian(State Key Laboratory of Mechanics and Control of Mechanical Structure,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Laboratory of Space Mechanical and Thermal Integrative Technology,Shanghai Institute of Satellite Engineering,Shanghai 201109,China)
机构地区:[1]南京航空航天大学机械结构力学及控制国家重点实验室,江苏南京210016 [2]上海卫星工程研究所空间机热一体化技术实验室,上海201109
出 处:《振动工程学报》2021年第2期364-371,共8页Journal of Vibration Engineering
基 金:国家自然科学基金资助项目(51875363,51505294)。
摘 要:高静低动刚度隔振系统低频隔振性能优越,双层隔振系统对高频振动衰减迅速。将二者结合,提出基于欧拉屈曲梁负刚度调节器的一类双层高静低动刚度隔振系统,该类双层高静低动刚度隔振系统的特点是上下层的负刚度调节器安装于同一基础。对该系统进行了静力学分析,给出了此类隔振系统的负刚度适用范围;采用积极隔振模型,建立了双层高静低动刚度隔振系统的动力学方程,并使用谐波平衡法求解了系统动力学响应,根据上下层刚度之间存在的约束关系,且上下层刚度不能同时达到准零刚度等限制条件,给出了上下层线性刚度系数的有效取值范围,围绕有效取值范围的边界讨论上下层刚度系数对系统隔振性能的影响,并将其与普通的双层线性隔振系统的隔振性能进行比较。此外,还定义了双层非线性隔振系统的力传递率,研究了外激励幅值和阻尼比的大小对动力学响应和隔振性能的影响。结果表明,上下层分别使用负刚度来获取准零刚度隔振系统带来的性能迥异,上层刚度完全线性,下层为准零刚度时系统的隔振性能最好。The low-frequency vibration isolation performance of the vibration isolation system with high-static-low-dynamic stiffness is superior to linear system,and the two-stage vibration isolation system attenuates high-frequency vibration rapidly.Combining the two advantages,a two-stage vibration isolation system with high-static-low-dynamic stiffness based on Euler buckled beam negative stiffness corrector is proposed.The static analysis of the system is carried out.The dynamic equations of the two-stage isolation system with high-static-low-dynamic stiffness is established by using the active vibration isolation model,and the dynamic response of system is solved by using the Harmonic Balance Method.There is a restriction when using the two-stage vibration isolation system.The restriction is that there is a constraint relationship between the upper and lower stiffness,and the upper and lower stiffness cannot achieve quasi-zero stiffness at the same time when using the system.Moreover,the effective range of the linear stiffness coefficient of the upper and lower stiffness is given.The influence of the upper and lower stiffness coefficients on the vibration isolation performance of the system is discussed in detail in terms of the boundary of the effective range,and its vibration performance is compared with that of the ordinary two-stage linear vibration isolation system.The results show that the vibration isolation performance of the system is the best when the upper stiffness is completely linear and the lower stiffness is quasi-zero stiffness.Furthermore,the force transmissibility of the two-stage nonlinear vibration isolation system is defined and the influence of system parameters on dynamic response and vibration isolation performance is studied.
分 类 号:O328[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249