检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何景晖 敖银辉[1] 赵伟良 HE Jinghui;AO Yinhui;ZHAO Weiliang(School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出 处:《微处理机》2021年第2期53-57,共5页Microprocessors
摘 要:针对光缆交接箱端口人工识别效率低、准确度差的问题,提出一种用于端口定位与端口识别的视觉检测方法,以实现端口检测过程自动化。该方法对输入图像进行标准化,结合光交箱的物理结构与霍夫圆检测,实现对光交箱图像中所有端口区域的自适应分割;定义端口的梯度直方图与颜色为支持向量机分类器的训练特征,同时设计基于卷积神经网络的分类器,用于对未能正确判断的端口作二次识别,确保有效地权衡检测速度与准确率。实验结果表明,该方法能够准确检测每个端口位置与识别状态,对自然场景下采集的图像能够达到98%的识别精度与平均0.02秒的处理速度。Aiming at the problems of low efficiency and poor accuracy of manual identification of optical cable cross connection cabinet port,a visual detection method for port location and port identification is proposed to realize automation of port detection process.The method standardizes the input images,combines the physical structure of the optical cable cross connection cabinet with the Hough circle detection,and realizes the adaptive segmentation of all port areas in the optical cabinet images.The gradient histogram and color of ports are defined as the training features of SVM classifier,and a classifier based on convolutional neural network is designed for secondary recognition of ports which can not be judged correctly,thus ensuring the effective trade-off between detection speed and accuracy.Experimental results show that the method can accurately detect the position and recognition status of each port,and can achieve 98%recognition accuracy and average processing speed of 0.02 seconds for images collected in natural scenes.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49