检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔邦彦 田润澜[1] 王东风 崔钢[1] 石静苑[3] CUI Bangyan;TIAN Runlan;WANG Dongfeng;CUI Gang;SHI Jingyuan(School of Aviation Operations and Services,Aviation University of Air Force, Changchun 130022, China;Air Force Research Institute, Beijing 100012, China;School of Aeronautical Foundation, Aviation University of Air Force, Changchun 130022, China)
机构地区:[1]空军航空大学航空作战勤务学院,吉林长春130022 [2]空军研究院,北京100012 [3]空军航空大学航空基础学院,吉林长春130022
出 处:《系统工程与电子技术》2021年第5期1224-1231,共8页Systems Engineering and Electronics
基 金:国家自然科学基金(61571462)资助课题。
摘 要:传统的辐射源识别通过比对、匹配辐射源信号与雷达数据库来识别,这种方法很难满足战时高效、快速和准确的识别要求。随着机器学习方法的提出,诸如支持向量机等算法在辐射源识别领域的运用,可以满足战时高效、快速的识别要求,但这种方法在低信噪比环境下,辐射源识别准确率低。针对上述问题,采用深度学习,引入注意力机制和特征融合方法,提出注意力机制特征融合一维卷积长短时深度神经网络(attention-mechanism feature-fusion one-dimensional convolution long-short-term-memory deep neural networks,AF1CLDNN)识别模型。实验验证了注意力机制和特征融合方法的有效性,及新识别模型在低信噪比环境下具有较高识别准确率与识别速度。Traditional emitter identification is based on the comparison and matching of emitter signal and radar database,which is difficult to meet the requirements of high efficiency,fast and accurate identification in wartime.With the development of machine learning methods,such as the application of support vector machine(SVM)and other algorithm in the field of emitter identification,can meet the requirements of efficient and rapid identification in wartime.However,this method has low accuracy of emitter identification in low signal to noise ratio environment.In order to solve the above problems,the deep learning is used,the attention mechanism and feature fusion method is introduced,and a indentification model of attention-mechanism feature-fusion one-dimensional convolution long-short-term-memory deep neural networks(AF1CLDNN)is proposed.The effectiveness of attention mechanism and feature fusion method is verified by experiments,and the new indentification model has high indentification accuracy and indentification speed in low signal to noise ratio environment.
关 键 词:辐射源识别 深度学习 时间序列 注意力机制 特征融合 一维卷积长短时深度神经网络
分 类 号:TN971.1[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222