检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:柴旭 方明[1,2] 付飞蚺[1] 邵桢[1] CHAI Xu;FANG Ming;FU Feiran;SHAO Zhen(School of Computer Science Technology,Changchun University of Science and Technology,Changchun 130022,China;School of Artificial Intelligence,Changchun University of Science and Technology,Changchun 130022,China)
机构地区:[1]长春理工大学计算机科学技术学院,长春130022 [2]长春理工大学人工智能学院,长春130022
出 处:《计算机工程与应用》2021年第9期199-206,共8页Computer Engineering and Applications
基 金:吉林省科技发展计划(20170307002GX)。
摘 要:考生异常行为的监测容易使监考人员产生视觉疲劳。借鉴监考人员发现异常的过程,提出一种可用于考场异常行为分析的视线估计模型。为了减少图像中视线的信息损失,采用注视向量表示视线的大小和方向。该模型分为生成器、视线合成模块、鉴别器,先将考生头部图像输入生成器生成注视向量,再将头部位置和注视位置输入到合成模块得到真实注视向量。将头部图像与上述所得的两种向量输入鉴别器中,其生成对抗模式达到最优时,可得到生成真实值的生成器模型。实验结果表明,在多个考场环境中,该方法的性能优于所对比的几种方法。其中与Lian等人方法相比AUC(Area Under Curve)提高了2.6%,Ang(Angular error)和Dist(Euclidean distance)分别有效降低了20.3%和8.0%。Monitoring of examinee’s abnormal behavior is easy to make the invigilator to feel visual fatigue.In this paper,model based on line of sight estimation is proposed to automatically detect the abnormal behavior in the examination room.In order to reduce the information loss of line of sight,gaze vector is used to represent the size and direction of line of sight.The model consists of three parts:gaze vector generator,gaze synthesis module and discriminator.Image of examinee’s head is given as input to the generator to generate the gaze vector,and then the head position and gaze position of the examinee are input into the synthesis module to obtain the real gaze vector.The head image and the two vectors obtained above are input into a discriminator,and when the generation adversarial mode is optimal,a generator model that generates real values can be obtained.The experimental results show that the performance of this method is better than the several methods compared in multiple test room environments.Compared with those of Lian et al,the results show that the Area Under Curve(AUC)index is increased by 2.6%while Angular error(Ang)and Euclidean distance(Dist)of the model are efficiently reduced by 20.3%and 8.0%respectively.
关 键 词:考场 视线估计 生成对抗网络(GAN) 注视向量
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.236