检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:麻哲旭 杨峰[1,2] 乔旭[1] MA Zhexu;YANG Feng;QIAO Xu(School of Mechanical Electronic and Information Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China;State Key Laboratory of Coal Resources and Safe Mining,China University of Mining&Technology,Beijing 100083,China)
机构地区:[1]中国矿业大学(北京)机电与信息工程学院,北京100083 [2]中国矿业大学煤炭资源与安全开采国家重点实验室,北京100083
出 处:《计算机工程与应用》2021年第9期272-278,共7页Computer Engineering and Applications
基 金:北京市科技计划(Z191100008019001);中国铁路总公司科技计划课题(2017G002-Q)。
摘 要:铁路路基病害不断增加,其中翻浆冒泥病害和路基下沉病害最为常见,严重影响铁路安全运营。车载地质雷达检测方法是铁路路基病害检测的一种常用方法。然而,通过雷达图像对路基病害进行识别仍以人工判别为主,且需要专家丰富的经验。由于路基病害形态复杂、尺度较大,如何对铁路路基病害进行自动识别是一项具有挑战性的任务。针对这些问题,通过探地雷达实地采集数据构建了铁路路基病害数据集,提出了一种铁路路基病害实时智能检测方法(LS-YOLOv3)。该方法针对铁路路基病害的特点设计了深度残差网络提取病害特征,并采用多尺度预测网络在4个尺度上进行特征融合,形成铁路路基病害实时检测模型。实验结果表明,与传统的HOG+SVM算法、双阶段的Faster-RCNN算法、Cascade R-CNN算法、单阶段的YOLOv3算法和轻量化的TinyYOLOv2、TinyYOLOv3算法相比,提出的算法获得了最高的均值平均精度(82.67%)并在配有英伟达GeForce RTX 2080Ti GPU的计算平台上实现了实时检测(32.26 frame/s)。旨在尝试提供一种铁路路基病害检测领域的实时性新方法。Railway subgrade defects are constantly increasing. Mud pumping and subgrade settlement are the most common defect, which serious threats railway safety operations. Vehicle-borne Ground Penetrating Radar(GPR)detection method has become the main method for railway subgrade defect detection. However, the recognition of subgrade defect by radar images is still relies on artificial recognition, requiring extensive expertise of experts. Due to the largescale and the complex shape of defect, automatic recognition is a challenging task. In response to these problems, this paper constructs a railway subgrade defect data set by field detect of vehicle-borne ground penetrating radar, and presents a real-time intelligent detection method for railway subgrade defect(LS-YOLOv3). This method designs the deep residual network to extract the railway subgrade defect features, and multi-scale prediction networks has been used to merge feature maps on four scales to form a real-time detection model for railway subgrade defect. The experimental results show that compared with the traditional HOG+SVM, two-stage algorithm Faster-RCNN, Cascade R-CNN, onestagea lgorithm YOLOv3 and light weight algorithm Tiny YOLOv2, Tiny YOLOv3, algorithm proposed in this paper achieves the highest mean average accuracy(82.67%)and real-time detection(32.26 frames per second)on a computing platform equipped with a NVIDIA GeForce RTX 2080 Ti GPU. This paper tries to provide a real-time new method for the detection of railway subgrade defect.
关 键 词:铁路路基病害 探地雷达 卷积神经网络 YOLOv3
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] U216.41[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195