基于多层感知机模型的天线方位角诊断  被引量:2

Antenna azimuth diagnosis based on multi-layer perceptron model

在线阅读下载全文

作  者:陈向荣 CHEN Xiangrong(China Mobile Communications Group Fujian Co.,Ltd.,Fuzhou 350001,China)

机构地区:[1]中国移动通信集团福建有限公司,福建福州350001

出  处:《电信科学》2021年第4期90-96,共7页Telecommunications Science

摘  要:作为影响移动通信质量的关键因素,天线方位角的准确性将直接影响网络优化质量。提出一种基于多层感知机的天线方位角诊断方法,将方位角分为12个区间类别,每个类覆盖30°范围,即[0,30°)记为类别0,…,[330°,360°)记为类别11,利用多层感知机算法识别天线方位角的区间,自动识别天线方位角的角度范围,为网络优化(网优)工程师判断实际的网络覆盖问题提供了有效的数据支撑,在核查天线性能方面极大地减少了工作量,降低了人工成本。实验结果表明,该方法能够有效快速判别天线方位角区间类别,识别准确率达到了92.6%,高于随机森林和逻辑回归分类算法的分类准确率。Antenna azimuth was seen as a key factor in the quality of mobile communications,and its accuracy will directly affect the quality of network optimization.An antenna azimuth diagnosis method was proposed based on multi-layer perceptron.The azimuth was divided into 12 interval classes,each class covered a range of 30°,that was,[0,30°)was recorded as class 0,…,[330°,360°)was recorded as class 11.The multi-layer perceptron algorithm was used to identify the range of the antenna azimuth angle and automatically identify the angle range of the antenna azimuth angle,which provided effective data support for the network optimization engineer to determine the actual network coverage problem,and greatly reduced workload and labor cost in verifying antenna performance.Experimental results show that the method can effectively and quickly discriminate the antenna azimuth interval class,and the recognition accuracy reaches 92.6%,which is higher than the classification accuracy of random forest and logistic regression classification algorithms.

关 键 词:天线方位角 多层感知机 反向传播算法 神经网络 网络优化 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象