检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:亓慧[1] 史颖 李灯熬[3] 穆晓芳 侯明星[1] QI Hui;SHI Ying;LI Deng-ao;MU Xiao-fang;HOU Ming-xing(Department of Computer,Taiyuan Normal University,Jinzhong,Shanxi 030619,China;School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China;College of Data Science,Taiyuan University of Technology,Jinzhong,Shanxi 030600,China)
机构地区:[1]太原师范学院计算机系,山西晋中030619 [2]山西大学计算机与信息技术学院,太原030006 [3]太原理工大学大数据学院,山西晋中030600
出 处:《计算机科学》2021年第5期86-90,共5页Computer Science
基 金:国家重大科研仪器研制项目(6202780085);国家自然科学基金(62076177);山西省关键核心技术和共性技术研发专项(2020xxx007);山西省科技厅重点研发项目(201803D31055);2020年度重庆市出版专项资金资助项目。
摘 要:为了提高软件可靠性智能预测的精度,采用连续型深度置信神经网络算法用于软件可靠性预测。首先提取影响软件可靠性的核心要素样本,并获取样本要素的关键特征;然后建立连续型深度置信神经网络(Deep Belief Network,DBN)的软件可靠性预测模型,输入待预测样本,通过多个受限波尔兹曼机(Restricted Boltzmann Machine,RBM)层的预处理训练,以及多次反向微调迭代获取DBN权重等参数,直到达到最大RBM层数和最大反向微调迭代次数;最后获得稳定的软件可靠性预测模型。实验结果证明,通过合理设置DBN隐藏层节点数和学习速率,可以获得良好的软件可靠性预测准确率和标准差。与常用的软件可靠性预测算法相比,所提算法的预测准确度高且标准差小,在软件可靠性预测方面的适用度较高。In order to improve the accuracy of intelligent prediction of software reliability,continuous depth confidence neural network algorithm is used for software reliability prediction.Firstly,the core elements samples that affect software reliability are extracted,and the key features of the sample elements are obtained.Then,a software reliability prediction model based on conti-nuous deep belief neural network(DBN)is established.The samples to be predicted are input,and the parameters such as DBN weight are obtained through pre-processing training of multiple Restricted Boltzmann Machine(RBM)layers and multiple reverse fine-tuning iterations until the maximum number of RBM layers and the maximum number of reverse fine-tuning iterations are reached.Finally,a stable software reliability prediction model is obtained.Experiments show that good software reliability prediction accuracy and standard deviation can be obtained by reasonably setting the number of nodes in the hidden layer of DBN and the learning rate.Compared with commonly used software reliability prediction algorithms,this algorithm has high prediction accuracy,small standard deviation and high applicability in software reliability prediction.
关 键 词:深度置信神经网络 软件可靠性 软件失效 学习速率
分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.55.178