基于改进密度峰值聚类的超短期工业负荷预测  被引量:8

Ultra-short term industrial load prediction based on improved density peak clustering

在线阅读下载全文

作  者:李钢 杜欣慧[1] 裴玥瑶 刘浩洋 Li Gang;Du Xinhui;Pei Yueyao;Liu Haoyang(School of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China)

机构地区:[1]太原理工大学电气与动力工程学院,太原030024

出  处:《电测与仪表》2021年第5期159-163,共5页Electrical Measurement & Instrumentation

基  金:国家自然科学基金资助项目(U1510112)。

摘  要:密度峰值聚类的收敛速度较快且无需人工设置最佳聚类数,更具备高鲁棒性特点,可以在工业负荷预测中进行用户用电行为的模式识别与分类,然后进行预测,具有较高的实际应用价值。但是该算法在小样本条件下聚类效果不佳,容易“遗漏”样本中的聚类中心。针对这种情况,进行类间距离优化和类内距离优化,使待聚类数据更容易被分类,对用户用电行为进行深入地挖掘分类,再使用灰色关联度确定待预测日所属类簇,使用GRNN神经网络进行负荷预测。通过Matlab仿真,可以得出结论,文中方法可以有效提高工业用户用电负荷数据的聚类效果,并提高负荷预测的精度。Density peak clustering has the advantages of fast convergence,strong robustness,and there is no need to manually set the optimal clustering number,etc.It can be used for pattern recognition and classification of user electricity behavior in industrial load forecasting,and then,makes prediction,which has high practical application value.However,this algorithm has a poor clustering effect under the condition of small samples,which is easy to"miss"the clustering center in the sample.In view of this situation,inter-class optimization and intra-class optimization are carried out for the density peak clustering to enhance the data separability and conduct in-depth mining and classification of electricity consumption behaviors of users.Then,gray relational degree is used to determine the category to be predicted,and GRNN neural network is used for load prediction.Through Matlab simulation,it can be concluded that the method proposed in this paper can effectively improve the clustering effect of power load data of industrial users and improve the accuracy of load prediction.

关 键 词:密度峰值聚类 类间优化 类内优化 工业负荷预测 用电行为 

分 类 号:TM714[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象