检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:祁星晨 卓旭升[1] Qi Xingchen;Zhuo Xusheng(School of Information and Electrical Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
机构地区:[1]武汉工程大学电气信息学院,湖北武汉430205
出 处:《电子技术应用》2021年第5期40-44,共5页Application of Electronic Technique
基 金:湖北省自然科学基金(2016CFC757)。
摘 要:边缘设备的快速发展和深度学习的落地应用越来越多,两者结合的趋势越发明显。而针对低功耗边缘设备AI应用的潜力还未完全开发出来,大量设备隐藏着大量计算能力,释放其潜力所带来的社会效益和经济效益是非常明显的。因此,以目标检测任务中较为常见的人脸检测为例,将MTCNN人脸检测算法改进并移植到资源极其紧张的低功耗嵌入式平台,在一定环境条件下,最终成功地检测到人脸,并绘制出人脸候选框,结合舵机云台具备了一定的人脸跟踪能力。The rapid development of edge devices and the application of deep learning are increasing,the trend of combining the two is becoming more and more obvious.The potential of AI applications for low-power edge devices has not yet been fully developed.A large number of devices hide a lot of computing power.The social and economic benefits brought by the release of its potential are very obvious.Therefore,taking the more common face detection in objective detection tasks as an example,the MTCNN face detection algorithm is improved and transplanted to a low-power embedded platform with extremely limited resources.Under certain environmental conditions,the face is finally successfully detected,and the face candidate boundingbox is drawn,it has face tracking function combined with the servo.
关 键 词:低功耗边缘设备 目标检测 人脸检测跟踪 级联卷积神经网络
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117