基于距离正则化的单视图三维重建  被引量:1

Single-view 3D reconstruction based on margin regularization

在线阅读下载全文

作  者:胡茂林 李金龙[1] 胡涛[1] Hu Maolin;Li Jinlong;Hu Tao(School of Computer Science and Technology,University of Science and Technology of China,Hefei 230027,China)

机构地区:[1]中国科学技术大学计算机科学与技术学院,安徽合肥230027

出  处:《信息技术与网络安全》2021年第5期56-61,共6页Information Technology and Network Security

摘  要:针对从一张物体有限的二维RGB图像信息中还原物体的三维形状信息,提出了基于距离正则化的单视图三维重建。利用二维卷积神经网络(Convolutional Neural Network,CNN)设计图像编码器和三维卷积神经网络设计残差块,再利用残差块为基础设计三维形状生成器,即三维残差生成器。给定一张物体的二维RGB图像,首先使用图像编码器提取RGB图像的语义信息;然后,三维形状生成器使用语义信息,恢复RGB图像中物体的三维形状信息。同时,提出了距离规则化损失,在训练过程中,保证三维物体形状重建质量。实验结果显示,本方法在交并比(Intersection over Union,IoU)评价指标上超过了之前最好的方法。In order to recover the 3D shape of the object in the input image from the limited information of 2D RGB image,this paper proposes a single image 3D reconstruction method based on a margin regularization loss.This paper uses 2D convolutional neural network(CNN)to design an image encoder and employ 3D CNN to design a special residual block,and then uses residual block to design 3D residual generator.Given a 2D RGB image of an object,firstly,we use our designed image encoder to extract the semantic information of the RGB image;then,the 3D residual generator takes the semantic information as input and recover the 3D shape of the object in the RGB image.At the training phase,this paper proposes a distance regularization loss to ensure the quality of 3D object shape reconstruction during the recovering process.Experiment results demonstrate that the proposed method surpasses the previous best method in the metrics of Intersection over Union(IoU).

关 键 词:三维重建 卷积神经网络 残差块 残差网络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象