检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张柏翰 凌捷[1] ZHANG Bohan;LING Jie(School of Computer,Guangdong University of Technology,Guangzhou 510006,China)
出 处:《计算机工程与应用》2021年第10期81-87,共7页Computer Engineering and Applications
基 金:广东省重点领域研发计划项目(2019B010139002);广州市重点领域研发计划项目(202007010004)。
摘 要:当前基于深度学习的恶意软件检测技术由于模型结构及样本预处理方式不够合理等原因,大多存在泛化性较差的问题,即训练好的恶意软件检测模型对不属于训练样本集的恶意软件或新出现的恶意软件的检出效果较差。提出一种改进的基于深度神经网络(Deep Neural Network,DNN)的恶意软件检测方法,使用多个全连接层构建恶意软件检测模型,并引入定向Dropout正则化方法,在模型训练过程中对神经网络中的权重进行剪枝。在Virusshare和lynx-project样本集上的实验结果表明,与同样基于DNN的恶意软件检测模型DeepMalNet相比,改进方法对恶意PE样本集的平均预测概率提高0.048,对被加壳的正常PE样本集的平均预测概率降低0.64。改进后的方法具有更好的泛化能力,对模型训练样本集外的恶意软件的检测效果更好。Most of the current deep-learning-based malware detection methods have the problem of poor generalization caused by the model structures and sample preprocessing methods that are not suitable enough.In other words,the trained malware detection models might have a poor detection effect on those malwares that are not included in the training sample set or those newly emerged malwares.This paper proposes an improved Deep Neural Network(DNN)based malware detection method,which uses multiple fully connected layers to build a malware detection model,and introduces a directional Dropout regularization method to prune the weights in the neural network during the model training process.The experimental results on the Virusshare dataset and the lynx-project sample set show that,compared with another DNN based malware detection model DeepMalNet,the proposed model attains an average predicted probability on the malicious PE sample set that is increased by 0.048,and an average predicted probability on the packed normal sample set that is decreases by 0.64.The results indicate that the proposed method has a better generalization ability,and a better detection effect on malwares outside the training sample set.
关 键 词:PE文件 恶意软件检测 深度学习 神经网络 深度神经网络(DNN)
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.20.44