检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:滕明明 王孔伟[1] 王宵亮 Teng Mingming;Wang Kongwei;Wang Xiaoliang(Key Laboratory of Geological Disaster of Three Gorges Reservoir Area of Ministry of Education(China Three Gorges University),Yichang 443002,Hubei,China)
机构地区:[1]三峡库区地质灾害教育部重点实验室(三峡大学),湖北宜昌443002
出 处:《灾害与防治工程》2020年第2期49-57,共9页Disaster and Control Engineering
基 金:国家自然科学基金青年基金项目:。
摘 要:自三峡水库蓄水以来,三峡库区巴东段发生上万次与水库蓄水相关的水库地震,最大震级5.1级,因此对水库地震的危险性预测非常重要。本文利用BP神经网络建立预测模型,对巴东段水库地震进行危险性预测,得出结论:神龙溪和东壤河以及高桥断裂两侧水库地震分布非常密集属于一等危险区域;官渡口-边连坪及沿渡河以北区域地震数量明显稀疏,震级较小,危险性不大(主要与岩溶塌陷有关),属于二等危险区;长江以南区域整体上地震数量较少,分布零星,属于三等危险区。其结果与已发生的水库地震对比,表明该BP神经网络预测模型计算出的危险性等级具有一定的合理性,满足该区域水库地震危险性的预测。Since the impoundment of the Three Gorges Reservoir,there have been tens ofthousands of reservoir earthquakes related to the impoundment of the reservoir in theBadong section of the Three Gorges reservoir area,with a maximum magnitude of 5.1.Therefore,it is very important to predict the risk of reservoir earthquakes.This article usesBP neural network to establish a prediction model to predict the risk of earthquakes in theBadong section of the reservoir.It is concluded that the earthquake distribution of thereservoirs on both sides of the Shenlongxi and Dongrianghe and Gaoqiao faults Very dense,belonging to the first-class danger zone;Guandukou~Bianlianping and the area north of Yandu River are obviously sparsely sparse,with small magnitude and low risk(mainlyrelated to karst collapse),belonging to the second-class danger zone;the area south of theYangtze River On the whole,the number of earthquakes is small and scattered,and theybelong to the third-class danger zone.The results are compared with the earthquakes in thereservoirs that have occurred,indicating that the risk levels calculated by the BP neuralnetwork prediction model are reasonable to a certain extent,and satisfy the prediction ofthe earthquake risk of reservoirs in the region.
关 键 词:三峡库区 BP神经网络 诱震因素 危险性预测模型
分 类 号:P31[天文地球—固体地球物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222