检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢心喻 鲁业明 王晓放[1] 王巍[1] XIE Xin-yu;LU Ye-ming;WANG Xiao-fang;WANG Wei(College of Energy and Power,Dalian University of Technology,Dalian,China,116024)
机构地区:[1]大连理工大学能源与动力学院,辽宁大连116024
出 处:《热能动力工程》2021年第3期26-34,共9页Journal of Engineering for Thermal Energy and Power
基 金:国家重点研发计划课题(2018YFB0606104);辽宁省科技重大专项(2019JH1-10100024)。
摘 要:部件精细化建模方法研究一直为燃气轮机动态性能仿真领域的研究热点.以某经典单轴燃机核心部件压气机为对象,基于模块化建模思想利用Matlab/Simulink平台搭建了系统仿真计算平台,并将最小二乘法、三次样条插值法以及BP神经网络法嵌入平台进行了预测应用研究.结果表明:在压气机性能预测中,三种方法均可有效预测部件性能,但BP神经网络法和三次样条插值法的预测结果优于最小二乘法;在整机性能预测中,最小二乘法整机仿真计算结果偏离预设值,而BP神经网络法和三次样条插值法的仿真计算结果具有较高的准确性;在时效性方面,BP神经网络法所需时间成本比其余两种方法高.The study of component refinement modeling method has always been a hot topic in the field of gas turbine dynamic performance simulation.Here with the compressor core components of a classic single shaft gas turbine as object, based on modular modeling idea using Matlab/Simulink platform a system simulation platform is set up.The least square method, cubic spline interpolation method and BP neural network method are embedded into the platform for this prediction application study.The results show that in the compressor performance prediction, three methods can effectively predict the component performance, but the predictive results of the BP neural network and the cubic spline interpolation method are superior to the least square method.for the performance prediction of the whole machine, the simulation results of the least square method deviate from the preset value, while the simulation results of the BP neural network method and cubic spline interpolation method have high accuracy.For the timeliness, the time cost of BP neural network method is higher than the other two methods.
关 键 词:MATLAB/SIMULINK 压气机特性线 预测方法 动态性能仿真
分 类 号:TK474.8[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.119