检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:简川霞[1] 贺鑫 陈鑫 舒治鹏 贺凯帆 JIAN Chuan-xia;HE Xin;CHEN Xin;SHU Zhi-peng;HE Kai-fan(School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出 处:《包装工程》2021年第1期237-243,共7页Packaging Engineering
基 金:广东省信息物理融合系统重点实验室项目(2016B030301008);广东工业大学青年基金重点项目(17QNZD001);2020年大学生创新创业训练项目(xj202011845015,xj202011845016,xj202011845017)。
摘 要:目的针对实际生产中获取印刷标志图像标签成本较高的问题,研究基于约束谱聚类的印刷套准状态识别方法。方法基于少量有标签的样本,建立样本之间的must-link约束和cannot-link约束,并进行约束扩展。计算印刷标志图像样本点欧式空间相似度矩阵,并根据扩展后约束关系修正,构建样本点的特征向量空间。采用K-means方法对样本点特征向量空间进行2类聚类,即印刷套准图像和印刷套不准图像。结果文中方法在实验数据集上的最高印刷套准识别准确率为98.11%。文中方法(约束对数为30)的识别准确率优于无监督的谱聚类方法、朴素贝叶斯方法和决策树方法,文中方法与SVM方法的识别准确率接近。文中方法获取印刷标志图像标签的成本低于SVM方法,且模型建立和识别的时间也少于SVM方法。结论文中方法以较少的获取印刷标志图像标签成本达到了较高的印刷套准识别准确率。The work aims to study the printing registration recognition method based on the constrained spectral clustering algorithm, in order to overcome the problem of high cost of obtaining the label of the printing mark images in actual production. The constraints of the must-link and the connot-link were set and extended based on a few of labeled samples. The similarity matrix of the samples was computed in the Euclidean space and then revised by the extended constraint relationship, to construct the eigenvector space of the samples. The K-means method divided the samples in the eigenvector space into two sections, including the samples with the registration label and the ones with the misregistraion label. The proposed method was performed the experimental data, with the best printing registration recognition accuracy of 98.11%. The proposed method with 30 pairs of constraints outperformed the unsupervised spectral clustering algorithm, the Naivebayes method and the decision tree method in terms of the recognition accuracy. The recognition accuracy of the proposed method was nearly equal to the one of the support vector machine(SVM) method. Besides, compared with the SVM method, the proposed method was lower in the cost of obtaining the labels of the printing mark images and in the time-consumption of model construction and recognition. The proposed method achieves the higher accuracy of printing registration with the low cost of acquiring the labels of printing mark images.
分 类 号:TB801.3[一般工业技术—摄影技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7